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Abstract…….. 

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase 
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA 
simulation environment. The work was carried out from November 2008 to March 2011. This 
contract report focuses on presenting the new functionalities that were added to the infrared scene 
generator (IRSG) module which is part of the KARMA framework. Modifications were also done 
to the signature modelling and analysis tool (SMAT) which uses the IRSG to perform various 
kind of analysis.  

Résumé…..... 

L'objectif principal du contrat "Scène Infrarouge Synthétique" (W7701-082234) a été 
d'augmenter le niveau de fidélité d’engagements impliquant des autodirecteurs infrarouges dans 
l'environnement de simulation KARMA. Le travail a été réalisé à partir de novembre 2008 
jusqu’à mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités 
qui ont été ajoutées au module de génération de scène infrarouge (IRSG) faisant partie de 
l’environnement KARMA. Des modifications ont également été apportées à l’outil de 
modélisation et d'analyse de signature infrarouge (SMAT) qui utilise l’IRSG pour effectuer 
différents types d'analyse. 
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Executive summary 

Synthetic Infrared Scene: Improving the KARMA IRSG module 
and signature modelling tool SMAT 

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167; Defence R&D Canada – Valcartier; 
March 2011 

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase 
the level of fidelity of infrared guided weapon engagement simulations inside the KARMA 
simulation environment. The work was carried out from November 2008 to March 2011. This 
contract report focuses on the new functionalities that were added to the infrared scene generator 
(IRSG) module which is part of the KARMA framework. Modifications were also done to the 
signature modelling and analysis tool (SMAT) which uses the IRSG to perform various kind of 
analysis. 

The main improvements to the IRSG module include: the use of advanced rendering libraries and 
mechanisms to exploit graphical processor units, better atmospheric modelling including the use 
of a wideband correlated-k mode for increased performances, better representation of 
backgrounds, better representation of surface reflections, implementation of a zoom antialiasing 
algorithm, and representation of scattering effects. The SMAT tool was improved to take account 
of the new IRSG features and to add new modelling abilities. 

These improvements should reflect in the ability to build better signature models and ultimately 
in an increased fidelity of the generated scene for a wider range of conditions (including 
atmospheric conditions, engagement geometry, etc.). This will contribute to a significant increase 
of fidelity of the results obtained within the KARMA framework. 

The work done within this contract was aimed at fully digital simulation, so increasing 
performances was not driving the development. Eventually, some aspects, such as the zoom 
antialiasing algorithm, may need to be optimized to increase the frame rate.   
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Sommaire ..... 

Synthetic Infrared Scene: Improving the KARMA IRSG module 
and signature modelling tool SMAT 

M.-A. Labrie; E. Rouleau; J. Richard; M. Desmeules; A. Bastien; G. Rivet-
Sabourin; DRDC Valcartier CR 2011-167;R & D pour la défense Canada – 
Valcartier; Mars2011. 

 
L'objectif principal du contrat "Scène Infrarouge Synthétique" (W7701-082234) a été 
d'augmenter le niveau de fidélité d’engagements impliquant des autodirecteurs infrarouges dans 
l'environnement de simulation KARMA. Le travail a été réalisé à partir de novembre 2008 
jusqu’à mars 2011. Ce rapport de contrat est axé sur la présentation des nouvelles fonctionnalités 
qui ont été ajoutées au module de génération de scène infrarouge (IRSG) faisant partie de 
l’environnement KARMA. Des modifications ont également été apportées à l’outil de 
modélisation et d’analyse de signature infrarouge (SMAT) qui utilise l’IRSG pour effectuer 
différents types d'analyse. 

Les principales améliorations apportées au module IRSG comprennent: l'utilisation de 
bibliothèques de rendu avancé et des mécanismes permettant d'exploiter les processeurs de rendu 
graphique, une meilleure modélisation de l'atmosphère incluant l'utilisation d'un mode à large 
bande basé sur les k-corrélés pour des performances accrues, une meilleure représentation des 
arrière-plans, une meilleure représentation des réflexions sur les surfaces, la mise en œuvre d'un 
algorithme d’anticrénelage (zoom antialiasing), et la représentation des effets de diffusion. L'outil 
SMAT a été amélioré afin de tenir compte des nouvelles caractéristiques de l’IRSG et d'ajouter de 
nouvelles capacités de modélisation. 

Ces améliorations devraient se refléter dans la capacité de construire des signatures de modèles de 
meilleure qualité et, en fin de compte, en une fidélité accrue de la scène générée pour un plus 
large éventail de conditions (y compris les conditions atmosphériques, la géométrie de 
l’engagement, etc.) Cela contribuera à une augmentation significative de la fidélité des résultats 
obtenus avec KARMA. 

Le travail effectué durant ce contrat visait à améliorer les simulations entièrement numériques : 
l’aspect consistant à améliorer les performances n'était pas ce qui a dirigé les efforts. 
Éventuellement, certains aspects pourraient être optimisés pour augmenter la fréquence des 
images générés, tels que l'algorithme d’anticrénelage développé. 
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1 Introduction 

The main objective of the contract “Synthetic Infrared Scene” (W7701-082234) was to increase 
the level of fidelity of infrared scenes to be used in infrared guided weapon engagement 
simulations within the KARMA simulation environment. The work was carried out from 
November 2008 to March 2011. This contract report focuses on the new functionalities that were 
added to the infrared scene generator (IRSG) module which is part of the KARMA framework. 
Complementary information about the recent modifications is also detailed in [1]. More details 
about the state of the IRSG prior to this contract can be found in [2]. The report also presents 
modifications to the signature modelling and analysis tool (SMAT). This tool is used to build the 
signature models by populating the model databases, and generating various kind of analysis 
through images generated by the IRSG module.  The current version of SMAT is 3.11. The first 
iteration of development, which produced the version 2.00 of SMAT prior to this contract, is 
presented in details in [3] and [4]. 

The major modifications to the IRSG and SMAT are divided as described below. The 
architectural review of the IRSG is presented in Section 2. The efforts done to improve the low-
level rendering techniques are documented in Section 3. The computation of apparent radiance 
and the addition of reflections caused by the sun and the background on scene’s models are 
discussed in Section 4. An atmospheric module based on MODTRAN was also integrated in the 
KARMA framework in order to improve the atmospheric parameters; its mechanisms are detailed 
in Section 5. The antialiasing technique developed to improve the results of the IRSG is presented 
in Section 6. Important modifications were also done related to the background of generated 
images to produce non-uniform textures, as presented in Section 7. New parameters were also 
included in the temperature and material database of a model used in the IRSG process (Section 
8). Degradation of images due to atmospheric scattering was also implemented, such as described 
in Section 9. Other minor modifications which are helpful in data generation, analysis, etc. are 
also presented to keep track of the changes made during this contract (Sections 10, 11, 12 and 
13). 
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2 Scene generation refactoring 

Scene generation is done either through a KARMA simulation or through the SMAT modelling 
tool. At the beginning of this contract, a KARMA service (KARMA::SceneGenerator3D) was used 
by both “clients” and was based on other simulation services such as KARMA::Theatre, 
KARMA::Environment, etc. This approach was quite straightforward for a simulation as the scene 
was driven by models and parameters of a scenario. However, SMAT was required to emulate a 
simulation by creating models and parameters similarly to a KARMA scenario. This task was 
done in SMAT by the SMAT::AnalysisGenerator class which invokes the scene generation 
module. Therefore, SMAT was tightly coupled to the simulation framework. To remove 
unwanted dependencies, the architecture of the scene generation module had to be revisited. 

2.1 IRSG 

The scene generation functionalities have been isolated into the KARMA::IRSG class and an 
application programming interface (API) has been created to allow controlling the scene and the 
rendering parameters. Such an interfacing requires to create a lot of methods and data storage to 
foster the usability and flexibility of the IRSG. 

The IRSG still performs rendering of the infrared (IR) scene using OpenSceneGraph (OSG) for 
the 3D scene management. It is almost a standalone application as it is independent from the 
KARMA simulation, but the IRSG is available as a part of the KARMA::SceneGenerator3D 
library. The following KARMA libraries are required: KARMA::Materials, KARMA::DataTypes, 
KARMA::AdvancedTypes and KARMA::Coordinates. The IRSG would be further isolated from the 
KARMA simulation framework by using its own library. 

2.2 Adapting for KARMA 

The scene generation service in KARMA has been easily adapted to the IRSG. Indeed, most of 
the source code of the KARMA::SceneGenerator3D has been relocated into the IRSG. The 
responsibility of the KARMA::SceneGenerator3D is now to adapt the IRSG for a KARMA 
simulation instead of implementing scene generation, as shown in Figure 1. 
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Figure 1: Architecture of the IRSG adapted for KARMA. 

2.3 Adapting for SMAT 

In SMAT, scene generation is still invoked by the SMAT::AnalysisGenerator class, but now 
using the KARMA::IRSG class instead of the KARMA::SceneGenerator3D class. Similarly to the 
KARMA::SceneGenerator3D, the SMAT::AnalysisGenerator adapts the IRSG for infrared 
analysis in SMAT. The use of the IRSG allowed to reduce the dependencies on KARMA. Besides 
the libraries required by the IRSG, the SMAT::AnalysisGenerator uses some KARMA libraries 
to gather appropriate parameters for the rendering (e.g. KARMA::SmartAdapter, Scattering), as 
shown in Figure 2. The method SMAT::AnalysisGenerator::SetKarmaParameters() is used to 
gather these parameters and configure the IRSG accordingly. 
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Figure 2: Architecture of the IRSG adapted for SMAT. 

2.3.1 GUI uncoupling 

Basically, the purpose of the SMAT::AnalysisGenerator is to operate and configure the IRSG to 
perform infrared analysis. In order to increase reusability of this class and allow automated 
testing, the SMAT::AnalysisGenerator has been revisited to remove any dependencies to the 
graphical user interface (GUI) of SMAT. The following classes have been gathered into a library 
named SmatCore: 

• the SMAT::Settings class acts as a container for the SMAT application settings, 
including the scene generation settings; 
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• the SMAT::AnalysisData class acts as a container for the input parameters and the output 
results of an infrared analysis; and 

• the SMAT::AnalysisGenerator class acts as a manager of the scene generation settings 
and performs various infrared analyses based on images generated by the IRSG: image, 
intensity spectrum, polar plot, time plot and range plot. 

When a SMAT analysis is created, the SMAT::AnalysisGeneratorDialog class is the GUI that 
gathers the input parameters of the analysis, stores the corresponding information in a 
SMAT::AnalysisData object and triggers the SMAT::AnalysisGenerator to start an infrared 
analysis. 
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3 Advanced rendering techniques 

Infrared scene generation has to deal constantly with rendering issues. It is desirable that the 
scene generation performance and scene realism increase in order to obtain accurate data while 
the simulation length is not too much impacted. Naturally, the rendering libraries and mechanisms 
used to accomplish the scene generation process have a crucial impact. The modifications done to 
the IRSG module in regards to low-level rendering are described in this section. 

3.1 Migrating from OSG 2.2.x to OSG 2.8.0 
OSG is an open source 3D graphical toolkit that is used to manage and render 3D models in 
visible and infrared modes. The toolkit is written in C++ and is based on the lower level API of 
Open Graphic Library (OpenGL). In order to be compatible with Delta3D 3.2, which is used by 
the KARMA 3D viewer, and to benefit of the enhancements (including several bug fixes) of the 
latest version at this time, the OSG library used by the IRSG was updated to version 2.8.0.  

The most notable change of this migration was the replacement of the osgUtil::SceneView 
class, which has been declared deprecated, by the osgViewer::Viewer class. Table 1 
summarizes the updated methods corresponding to the deprecated methods. 

Table 1: Mapping between deprecated and updated methods of OSG 2.8.0. 

Deprecated methods 
(osgUtil::SceneView) 

Updated methods 

setDefault None 
setClearColor osg::Camera::setClearColor 

setSceneData osgViewer::setSceneData 

cull osg::Viewer::renderingTraversals 

setComputeNearFarMode osg::Camera::setComputeNearFarMode 

getCamera osgViewer::getCamera 

update osgViewer::eventTraversal 
osgViewer::updateTraversal 

setFrameStamp osgViewer::setFrameStamp 

setViewport osg::Camera::setViewport 

setViewMatrix osg::Camera::getViewMatrix 

draw osgViewer::renderingTraversals 

flushAllDeletedGLObjects None  

Since the osgViewer::renderingTraversals() method performs both the cull and the draw 
operations, the call to the IRSG::UpdateColor()method has been placed in a pre-draw callback. 
This allows updating the color after the culling and before the draw. 
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3.2 Migrating from Mesa to OpenGL 

OpenGL is an API for performing 3D rendering. However, it is not a software product and it does 
not have any source code. OpenGL is only a specification that describes an interface and its 
expected behaviour. Therefore, to use the OpenGL API, an OpenGL implementation is required.  

On Windows operating system (OS), a very basic implementation of OpenGL (1.1 or 1.4 
depending of the OS version) is provided through opengl32.dll. It is important to understand 
that this standard Windows library alone does not provide any hardware acceleration. In order to 
get hardware acceleration and implementation of the newer OpenGL specification (1.5 to 4.1), 
video drivers from graphics card manufacturer (like AMD/ATI, Intel, NVIDIA) need to be 
installed. These drivers are called OpenGL Installable Client Driver (ICD). Installing a video 
driver will not replace opengl32.dll: it is a system file and belongs to Windows (meaning that 
only Microsoft may update it). When a video driver is installed, another file will be copied on the 
system (nvoglv32.dll in the case of NVIDIA) and the registry will be modified. Then, 
opengl32.dll will call into the real GL driver (nvoglv32.dll). The OpenGL runtime accesses 
the registry to determine which ICD to load. 

For programmers, installing video card drivers will not make gl.h or opengl32.lib available. 
Those are files that come with the compiler and there are no updated gl.h and opengl32.lib 
files. These are stuck at GL 1.1 and are likely to be forever. This means that it is not possible to 
link directly to any function provided by newest OpenGL versions or extensions. In order to use 
these newer functions, glext.h and wglext.h shall be used to get function pointer at runtime 
with the wglGetProcAddress call. Fortunately, some libraries such as GLEW and GLEE were 
developed to make available function pointers. 

Mesa 3D is an open-source implementation of an API which is very similar to OpenGL. In fact, 
the Mesa 3D implementation tries to follow the OpenGL specification (with a certain delay in 
comparison to graphic card manufacturers) but does not guarantee the respect of it. Table 2 
presents pros and cons of using Mesa 3D. 

Table 2: Pros and cons of using Mesa 3D. 

Pros Cons 
- Completely platform independent since 

rendering is done via software. 
 
- The offscreen rendering API (OSMesa), 

in 16/32 bits, is easy to use. 

- OSMesa API is software only. 
 
- Need to use its own OpenGL32.dll (not the 
standard Windows one). 

 
- Does not support all OpenGL specifications. 
 
- Not up-to-date with the latest OpenGL 
release. 

 
- Small developer community. 
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Initially, the KARMA high dynamic range rendering was implemented using the Mesa’s off-
screen rendering API (OSMesa). The OSMesa interface supports 16-bit and 32-bit color channels 
rendering into user-allocated blocks of memory. 

An important requirement of this project was to migrate from Mesa 3D to OpenGL ICD in order 
to gain access to hardware acceleration and latest features of OpenGL. Table 3 presents the pros 
and cons of using OpenGL ICD. 

Table 3: Pros and cons of using OpenGL ICD. 

Pros Cons 
- Hardware accelerated rendering. 
 
- Up-to-date with the OpenGL features. 
 
- Use the standard Windows Opengl32.dll. 
 
- Up-to-date with the GLSL features. 
 
- Large community of users. 
 
- Used by OSG. 

- Availability of certain features (OpenGL 
extension) is hardware dependant. 

 
- Computation results may be slightly different 

depending on hardware. 
 

 
A good OpenGL implementation will render with hardware acceleration whenever possible. 
However, the implementation is free to render without hardware acceleration. OpenGL does not 
provide a mechanism to ensure that an application is using hardware acceleration, nor to query 
that it is using hardware acceleration. 

3.3 Framebuffer object 

Usually, images have a 8-bit format for each channel (red, green and blue). Thus, each component 
value can range from 0 to 255. In some situations, like in the case of radiance calculation for 
infrared scene generation, this range is not sufficient i.e. does not provide enough possible values. 
Framebuffer objects (FBO) allow storing images with a high-dynamic range (HDR), in 32-bit 
floating point values. Without HDR, clipping will occurs, meaning that areas that are too dark 
will be totally black (RGB(0,0,0)) and areas that are too bright will be totally white (RGB(1,1,1)).  

Thus, the OpenGL FBO extension has been used to perform the off-screen rendering into a 32-bit 
floating-point texture. By default, OpenGL uses the default framebuffer as the final rendering 
destination. Everything that is put in this buffer is automatically drawn to the screen. On the other 
hand, the FBO mechanism allows generating an image (2D array of pixels) in a buffer (other than 
the default OpenGL framebuffer) which can be post-processed. The image is not necessarily 
drawn on the screen: only if it is instructed to do so. Table 4 shows how to initialise the floating 
point texture within OSG. 
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Table 4: Definition of an off-screen floating-point texture in OSG. 

 
int imageWidth = 500; 
int imageHeight = 500; 
osg::TextureRectangle* offscreenTexture = new osg::TextureRectangle; 
offscreenTexture->setTextureSize(imageWidth, imageHeight); 
offscreenTexture->setSourceFormat(GL_RGBA); 
offscreenTexture->setSourceType(GL_FLOAT); 
offscreenTexture->setInternalFormat(GL_RGBA32F_ARB); 

 

Table 5 shows how to configure an osgViewer::Viewer to render into a floating point texture 
instead of using the standard framebuffer. 

Table 5: Render to texture using FBO in OSG. 

 
// Get the main camera from the viewer 
osg::Camera* camera = viewer->getCamera();   
 
// Set the camera to render in the FBO 
camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT); 
 
// Attach a texture to the FBO 
camera->attach(osg::Camera::COLOR_BUFFER, offscreenTexture.get(), 0, 0, false, 
0, 0); 

3.3.1 Context conflict 

Unlike in OSMesa, a FBO needs an OpenGL context to get working. A conflict between the 
SMAT/IRSG OpenGL contexts appeared when a new OpenGL context was created for the FBO. 
The solution retained to avoid this conflict was to memorize and make current the right context 
when calling the scene generation of the IRSG from SMAT. Table 6 shows the code used to 
avoid the OpenGL context conflict. 

Table 6: Code to avoid conflicts between the SMAT/IRSG OpenGL contexts. 

 
HGLRC KARMA::IRSG::m_glContext; 
HDC KARMA::IRSG::m_deviceContext; 
 

// Memorize the current OpenGL context 
m_deviceContext = m_openglWindowContext->getHDC(); 
m_glContext = m_openglWindowContext->getWGLContext(); 
 

… 
 

// Activate the OpenGL context of the IRSG (avoids conflicts with SMAT) 
if(wglGetCurrentDC() != m_deviceContext ||  
   wglGetCurrentContext() != m_glContext) 
{ 
    wglMakeCurrent(m_deviceContext, m_glContext)  
} 
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3.4 KARMA architecture 

Figure 3 and the following text show the modifications that were done to the KARMA 
architecture to make possible the changes discussed previously in this section of the report. 

 

Figure 3: Architecture of the IRSG related to the HDR hardware rendering. 

• IRSG is the class which handle the scene generation based on the osgViewer::Viewer. It 
implements the high dynamic range hardware rendering using an off-screen texture, a 
FBO (via the osgViewer::Viewer camera settings) and a shader program. It also takes 
care of the OpenGL context manipulation. 

• The operator() method of the PreDrawCallback is executed after the culling operation 
and before the draw operation. It has the responsibility of calling the 
IRSG::UpdateColor() method. 

• The operator() method of DrawCallback is executed after the draw operation. Its 
responsibility is to bind the right FBO to be read by the 
IRSG::ReadFrameBufferObject() method. 

IRSG

m_contextId : int
m_deviceContext : HDC
m_glContext : HGLRC
m_graphicContext : osg::GraphicsContext *
m_offscreenTexture : osg::ref_ptr<osg::TextureRectangle>
m_openglWindowContext : osgViewer::GraphicsWindowWin32 *
m_preDrawCallback : osg::ref_ptr<osg::Camera::DrawCallback>
m_scene : osg::ref_ptr<osg::Group>
m_shaderProgram : osg::ref_ptr<osg::Program>
m_supersampling : int
m_viewer : osg::ref_ptr<osgViewer::Viewer>

CheckConfiguration()
CloseOpenGlContext()
ConfigureRendering()
GenerateScene()
GetImageIrradiance()
GetImageRadiance()
ReadFramebufferObject()
UpdateColor()
UpdateScene()

DrawCallback

m_multisampledFBO : bool

DrawCallback()
~DrawCallback()
<<const,virtual>> operator ()()
SetMultisampledFBO()

<<uses>>

PreDrawCallback

PreDrawCallback()
~PreDrawCallback()
<<const,virtual>> operator ()()

<<uses>>

Inherit from
osg::Camera::DrawCallback

Inherit from
osg::Camera::DrawCallback
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4 Apparent radiance and reflections 

The addition of reflections to the IRSG module’s computations is important to bring realism to 
infrared (IR) scenes. As mentioned in [5], various components (like the sun, the background, 
flares and plumes) can produce reflections on other entities in a scene, which can have an impact 
on an IR sensor. 

During this contract, the computation of apparent radiance has been improved to vary spatially 
and to include contributions from reflections of the sun and fluxes (from the sky and the ground). 
Figure 4 shows how these reflections are combined to the emitted radiance of a spherical 3D 
model. These contributions are calculated and modulated for each rendered pixel, based on 
pixel’s normal compared with the sun position (vector oriented toward the sun); and the zenith 
vector for fluxes.  

 

Figure 4: Different reflections added on a 3D model. 

Since the contributions of the apparent radiance depend on the geometry, the shader technology is 
used. It was a natural choice because it is possible to access the normal (interpolated from the 
surrounding vertices’ normal) of each rendered pixel of the 3D model in order to combine and 
modulate these contributions at the rendering stage. Obviously, doing computations for each pixel 
can add an overhead, but this process is done via the graphics processing unit (GPU) which 
accelerates the overall process. Indeed, modern GPUs are very efficient to make operations in 
parallel such as those described previously. 

The vertex shader presented in Table 7 is used to compute the normal and position of each vertex 
composing the 3D model. These values are interpolated in the fragment shader to obtain the 
normal and position for each fragment located between vertices. 
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Table 7: Vertex shader used in the IRSG. 

 
varying vec3 normal; 
varying vec3 position; 
 
void main(void) 
{ 
    normal = normalize(gl_NormalMatrix * gl_Normal).xyz; 
    position = normalize(gl_ModelViewMatrix * gl_Vertex).xyz; 
    gl_Position = ftransform(); 
} 

 

The in-band apparent radiance of thermal, path and reflected components are calculated in the 
IRSG while the fragment shader presented in Table 8 is used to compute the final value of pixels 
of a rendered 3D model, taking into account the polygon-geometry dependant components. This 
value represents the combination of the three components. These components, initially computed 
such as described in [5], are now computed as described below.   

The thermally emitted contribution to the apparent radiance as seen through the atmosphere is 
now given by 

( ) ( ) ( ) ( ) ( )cos , , dtherm N
app scaling surf bb surf path sensL L T z R= ε θ ε λ λ τ λ λ λ , (1)

where εscaling is an emissivity scaling that is detailed in Section 12 and N is the N angle factor 
detailed in Section 8.3. 

The apparent radiance component from the atmosphere located between the surface and the 
sensor is still given by 

( ) ( )dpath
app path sensL L R= λ λ λ . (2)

The apparent radiance component from reflections on a surface is now given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0

1
, d

1
1 , d

1
cos , d

i zenithrefl
app surf path sens

i zenith
surf path sens

i sun sun surf path sens

L z R

z R

E z R

+

−

θ 
= ψ λ ρ λ τ λ λ λ π π 

θ 
+ − ψ λ ρ λ τ λ λ λ π π 

+ θ λ ρ λ τ λ λ λ
π





, (3)
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where ( )+ψ λ  is the upward flux, ( )−ψ λ  is the downward flux and ( )0
sunE λ  is the sun 

irradiance. 

The uniform parameters at the beginning of the shader are values which come from the IRSG 
while the varying parameters are the result of a previous computational stage done in the vertex 
shader. 

Table 8: Fragment shader used in the IRSG. 

 
// different contributions used to calculate reflected 
// radiance at target surface position 
uniform float LUpRefApp; 
uniform float LDownRefApp; 
uniform float LSunRefApp; 
 
// sun position in eye coordinates 
uniform vec3 sunPositionEye; 
 
// zenith unit vector in eye coordinates  
uniform vec3 zenithVecEye;  
 
// thermal radiance  
uniform float LThermApp;  
 
// path radiance  
uniform float LAtmApp;  
 
// transparency  
uniform float transparency;  
 
// factor affecting LThermAPP  
uniform float nFactor;  
 
/////////////////////////////////////////////////////////////  
// Inputs from pixel shader (interpolated)  
/////////////////////////////////////////////////////////////  
 
varying vec3 normal;  
varying vec3 position;  
 
void main(void)  
{  
     /////////////////////////////////////////////////////////////  
     // Constants  
     /////////////////////////////////////////////////////////////  
 
     float PI = radians(180.0);  
     float PI_ON_TWO = radians(90.0);  
 
     vec3 fragmentNormal = normalize(normal); //Important: after interpolation normal modulus != 1.  
     vec3 fragmentPosition = normalize(position);  
 
     /////////////////////////////////////////////////////////////  
     // Thermal radiance  
     /////////////////////////////////////////////////////////////  
 
     float viewFactor = 0.0;  
     vec3 viewVec = normalize( -position );  
 
     // Ensure that the dot product is between the interval [-1.0, 1.0]  
     float dotProduct = max(-1.0, min(1.0, dot(viewVec, fragmentNormal)));          
 
     float viewAngle = acos(dotProduct);  
 
     // Compute view factor when view angle is not 90 degrees from the normal (0 otherwise)  
     if(viewAngle != PI_ON_TWO)  
     {  
         viewFactor = 1.0;  
 
         if(nFactor != 0.0)  
         {  
             // Compute view factor using cosine of angle between view vector and surface’s normal  
             viewFactor = pow( abs(dotProduct), nFactor );  
         }          
     }  
 
     // Modulate thermal radiance using view factor  
     float LThermAppContribution = viewFactor * LThermApp;  
 
     /////////////////////////////////////////////////////////////  
     // Sun contribution  
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     /////////////////////////////////////////////////////////////  
 
     float LSunRefAppContribution = 0.0;  
 
     vec3 sunVec = normalize(sunPositionEye-position);  
 
     // Ensure that the dot product is between the interval [-1.0, 1.0]  
     dotProduct = max(-1.0, min(1.0, dot(sunVec, fragmentNormal)));          
 
     float sunAngle = acos(dotProduct);  
         
     // Solar reflection is visible only when the view vector is on the surface's side where the reflection occurs  
     if(sign(cos(viewAngle)) == sign(dotProduct))  
     {  
         // Modulate sun contribution using cosine of angle between sun and surface normal   
         LSunRefAppContribution = abs(dotProduct) * LSunRefApp;  
     }          
 
     /////////////////////////////////////////////////////////////  
     // Upward and Downward contributions  
     /////////////////////////////////////////////////////////////   
 
     // Ensure that the dot product is between the interval [-1.0, 1.0]  
     dotProduct = max(-1.0, min(1.0, dot(zenithVecEye,fragmentNormal)));  
 
     float angleZenith = acos(dotProduct);  
 
     // Contributions are inverted when the view vector is on the surface's backside  
     if(viewAngle > PI_ON_TWO)  
     {  
         angleZenith = PI - angleZenith;  
     }          
 
     // Modulate contribution using angle between zenith and surface normal  
     float LUpRefAppContribution = (angleZenith/PI) * LUpRefApp;  
 
     // Modulate contribution based on angle between zenith and surface normal  
     float LDownRefAppContribution = (1-(angleZenith/PI)) * LDownRefApp;  
 
     /////////////////////////////////////////////////////////////  
     // Reflected radiance  
     /////////////////////////////////////////////////////////////  
 
     float LRefAppContribution = LUpRefAppContribution + LDownRefAppContribution + LSunRefAppContribution;  
 
     /////////////////////////////////////////////////////////////  
     // Total apparent radiance = Ltherm + Lref + Latm  
     /////////////////////////////////////////////////////////////  
 
     // total perceived radiance  
     float computedColor = LThermAppContribution + LRefAppContribution + LAtmApp;  
 
     // set the fragment color  
     gl_FragColor = vec4(computedColor, computedColor, computedColor, 1.0-transparency);  
}  

 

In order to supports double-sided surfaces, the fragment shader uses the view angle θview, defined 
as the angle between the view vector and the surface’s normal, when it modulates LThermApp, 
LSunRefApp, LUpRefApp and LDownRefApp components: 

• Thermal radiance LTherm is the same whether the surface is seen from front (θview < 90°) 
or behind (θview > 90°). 

• Sun reflection LSunRefApp is not seen (component set to 0) when the surface is seen from 
the opposite side where the reflection occurs. 

• Upward LUpRefApp and downward LDownRefApp reflections contributions are 
interchanged when the surface is seen from behind (θview > 90°). 

Notice that the vertex and fragment shaders described in Table 7 and Table 8 are directly 
embedded in the code, in the IRSG.cpp file (i.e. they are not defined in external files). Figure 5 
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shows the effect of reflections on a platform: a nice gradient effect is visible. The sun is in front 
of the platform with an elevation of 45.0 degrees (above horizon).  

 

Figure 5: An example showing images obtained without (left) and with (right) reflections. 

4.1 Reflections in KARMA simulations 

The reflections are always taken into account (i.e. activated) in KARMA simulations. The sun 
azimuth and elevation are defined in the Environment model and can be modified in its XML 
parameters file, as shown in Table 9. 

Table 9: KARMA’s environment parameters related to the sun. 

 
<parameter name="SunAzimuth"> 
    <double>0</double> 
    <documentation> 
         The sun azimuth in radians measured East from  
         North. This parameter is used by the visual environment (display      
         the sun in a viewer) and can also be used by the simulation. The  
         value range is from 0 to 2PI. 
    </documentation> 
</parameter> 
<parameter name="SunElevation"> 
    <double>0.7854</double> 
    <documentation> 
         The sun elevation in radians. This parameter is  
         used by the visual environment (display the sun in a viewer) and  
         can also be used by the simulation.  The value range is from -PI/2  
         to +PI/2.       
    </documentation> 
</parameter> 

 
 
  



 
 

16 DRDC Valcartier CR 2011-167 
 
 
 
 

4.2 Reflections in SMAT 

SMAT does not have access to the Environment model. However, the sun parameters can be 
modified via the Analysis Settings dialog box as show in Figure 6. 

 

Figure 6: Defining the sun parameters inside SMAT. 

Figure 7 shows the parameters of an analysis, sun and fluxes, causing the reflections. They can be 
activated or deactivated, based on the values selected. On the figure, the value selected (i.e. 
SMART which is described in Section 5), refers to the atmospheric model used to compute the 
components. It can be noted that, for backward compatibility and work using simple atmosphere 
models, a geometry independent reflection such as described in [5] can be computed by selecting 
Approx. in those fields. 
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Figure 7: Parameters causing reflections in SMAT. 
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5 Atmospheric module 

To improve IR scenes computed in the IRSG, an objective of this project was to use MODTRAN 
to obtain precise radiometric values depending of the current environment conditions to be 
recreated in the scene. There was already an effort at DRDC-Valcartier to produce a C++ library 
which is built on top of MODTRAN. This library is named SMART (not to be confused with 
SMAT) for Suite for Multi-resolution Atmospheric Radiative Transmission [6][7]. An interface, 
SMARTI, is also available to facilitate communications with another software. The main purpose 
of SMART is the calculation of atmospheric values such as transmitted solar irradiance, 
atmospheric fluxes, path and background radiances, and transmittance. This library can produce 
outputs in both spectral or wideband correlated-k (CK) format. 

5.1 Environment refactoring 

The Environment is a model already defined in KARMA. What needed to be added is the 
concept of atmospheric model. Thus, to integrate this new concept, the Environment model was 
modified to increase the modularity: the Environment gathers Atmosphere objects which are 
able to calculate atmospheric parameters depending on the current context (see Figure 8). 

 

Figure 8: The relation between Environment and Atmosphere. 

At this moment, the values which can be calculated by an Atmosphere are: 

• transmittance; 
• path radiance; 
• sky (or background) radiance; 
• solar irradiance; 
• upward flux; 
• downward flux; and 
• ambient temperature. 

Environment

Environment()
Environment()
<<virtual>> ~Environment()
<<virtual>> InitializeComposite()
GetTransmittance()
GetPathRadiance()
GetBackgroundRadiance()
GetSolarIrradiance()
GetUpFlux()
GetDownFlux()
GetAtmosphere()
GetAtmosphere()
GetCkTransmittance()
GetCkPathRadiance()
GetCkBackgroundRadiance()
GetCkSolarIrradiance()
GetCkUpFlux()
GetCkDownFlux()
IsWidebandModeAvailable()
GetAmbientTemperature()

(from Environment)

<<XML>>

Atmosphere

Atmosphere()
<<virtual>> ~Atmosphere()
InitializeComposite()
<<abstract>> Accept()
<<abstract>> Accept()
<<virtual>> GetTransmittance()
<<virtual>> GetPathRadiance()
<<virtual>> GetBackgroundRadiance()
<<virtual>> GetSolarIrradiance()
<<virtual>> GetUpFlux()
<<virtual>> GetDownFlux()
<<virtual>> GetCkTransmittance()
<<virtual>> GetCkPathRadiance()
<<virtual>> GetCkBackgroundRadiance()
<<virtual>> GetCkSolarIrradiance()
<<virtual>> GetCkUpFlux()
<<virtual>> GetCkDownFlux()
<<virtual>> GetAmbientTemperature()

(from Atmosphere)

<<Abstract>>

0..*0..*
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Environment traverses its list of atmospheric models and returns the appropriate data 
corresponding to the first atmospheric model found that meet the selection criteria. For each data 
mentioned previously which is required, Environment verifies, via the Accept() method, that the 
atmospheric model can provide this kind of data and uses an appropriate spectral band for 
processing this data. For example, the following model (Table 10) can handle six data types (with 
their correlated-k version): 

Table 10: An example of Accept() method for an atmospheric model. 

 
DataTypes::Boolean KARMA::AtmosphereExample::Accept(DataTypes::DoublewavelengthMin,     
                                                   DataTypes::DoublewavelengthMax,  
                                                   int property) 
{ 
    if (property != KARMA::Atmosphere::Transmittance_Type&& 
        property != KARMA::Atmosphere::CkTransmittance_Type&& 
        property != KARMA::Atmosphere::PathRadiance_Type&& 
        property != KARMA::Atmosphere::CkPathRadiance_Type&& 
        property != KARMA::Atmosphere::BackgroundRadiance_Type&& 
        property != KARMA::Atmosphere::CkBackgroundRadiance_Type&& 
        property != KARMA::Atmosphere::SolarIrradiance_Type&& 
        property != KARMA::Atmosphere::CkSolarIrradiance_Type&& 
        property != KARMA::Atmosphere::UpFlux_Type&& 
        property != KARMA::Atmosphere::CkUpFlux_Type&& 
        property != KARMA::Atmosphere::DownFlux_Type&& 
        property != KARMA::Atmosphere::CkDownFlux_Type) 
             return false; 
 
    // See if the range is ok 
    if (m_baseWavelengthMin <= wavelengthMin && m_baseWavelengthMax >= wavelengthMax) 
         return true; 
    else 
         return false; 
} 

 

5.2 An atmospheric model based on SMART 

To make available the SMART library into KARMA based simulations, an atmospheric model, 
AtmosphereSmart, was defined and is presented in Figure 9. 
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Figure 9: Model class diagram for the KARMA AtmosphereSmart atmospheric model. 

• AtmosphereSmart is the atmospheric model developed based on SMART which can be 
used in KARMA simulations to obtain values from SMART. A XML file contains the 
parameters which characterize this model (see file example shown in Annex A). 

• SmartAdapter is used to call methods from SMART and transform data from the IRSG 
to a SMART compliant format (and vice versa). An object of this class manages the 
complexity of the manipulation of objects and data (e.g. coordinate system conversion) 
inside SMART. Thus, AtmosphereSmart is not aware of how SMART works. Notice that 
SMAT uses this component directly (i.e. SMAT does not use the AtmosphereSmart 
model) when SMART values are required. 

• SMARTI is the interface to the SMART library which is based on MODTRAN. Notice that 
SMART is using a precise version of MODTRAN: MODTRAN 4 version 3 release 1, 
available in %KARMA_ROOT%\Softwares\Modtran. 

The KARMA::Spectrum data type is used to manipulate the SMART spectral format. For the 
wideband-ck mode, a wrapper was created (WidebandType) which encapsulates SMART 
wideband types (NormTypeCk, RadTypeCk, NormType). 

For KARMA simulations, the AtmosphereSmart model shall be defined in the composition of an 
Environment model, as shown in Table 11; its parameter file will allow initializing the 
atmospheric model in an appropriate way. 

AtmosphereSmart
(from Atmosphere)

<<XML>> SmartAdapter
(from Atmosphere)

Environment

Environment()
Environment()
<<virtual>> ~Environment()
<<virtual>> InitializeComposite()
GetTransmittance()
GetPathRadiance()
GetBackgroundRadiance()
GetSolarIrradiance()
GetUpFlux()
GetDownFlux()
GetAtmosphere()
GetAtmosphere()
GetCkTransmittance()
GetCkPathRadiance()
GetCkBackgroundRadiance()
GetCkSolarIrradiance()
GetCkUpFlux()
GetCkDownFlux()
IsWidebandModeAvailable()
GetAmbientTemperature()

(from Environment)

<<XML>>

Atmosphere
(from Atmosphere)

<<Abstract>>

0..*0..*

SMARTI SMART MODTRAN
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Table 11: Adding an atmospheric module in the Environment’s composition. 

 
<composite name="SMARTI"> 
     <component>AtmosphereSmart</component>           
     <parameters>$(KARMA_ROOT)\ModelRepository\xml\Parameters\ 
                  Other\AtmosphereSmart.xml 
     </parameters> 
     <composition>none</composition> 
     <priority>0</priority> 
     <documentation> 

Atmospheric model based on SMART/MODTRAN allowing the calculation of 
transmittance, path radiance, background radiance, solar irradiance, up 
flux, down flux; in spectral and/or wideband correlated-k. 

     </documentation> 
</composite> 

 

Inside SMAT, even though SmartAdapter is used directly without accessing the 
AtmosphereSmart model, the atmospheric settings are still described by the parameters file of 
AtmosphereSmart. Then, the parameters file of this model must be configured properly and set as 
shown in Figure 10 in order to initialize SMART appropriately. 

 

Figure 10: Setting the SMART configuration file inside SMAT. 
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5.2.1 Initialisation review 

For the wideband-ck mode, a pre-calculation phase must take place. Before beginning the 
execution of a simulation, each spectrum necessary for the scene generation process are converted 
into their CK equivalent. Thus, for each sensor, the following data are converted using the 
sensor’s conversion space: 

• the spectral response of the sensor (solar and thermal); 

• spectral characteristics (reflectivity, transmissivity, emissivity) of materials (solar and 
thermal); 

• lookup table of blackbody radiance as a function of temperature (wideband-ck): LBB (T, 
λ) Lbb_therm (T, ck). The table is constructed, using a SMART data structure, with a 
minimum value of 200 K and a maximum value of 2200 K with steps of 12.5 K. SMART 
returns an interpolated value if the table is interrogated with a temperature in between 
two table values. 

A container class, SensorCkData, is used to store the converted data and is available to the IRSG 
module. 

5.2.2 Calculation mode selection 

Inside KARMA simulations, the calculation mode (spectral or wideband-ck) is defined for each 
ImagingSensor and set inside its parameters file. If the parameter CalculationMode is set to 1, 
the sensor uses the spectral mode; while the value 2 indicates that the sensor uses the wideband-
ck mode. When the wideband-ck mode is selected, the apparent radiance components are 
computed in wideband format using the SMART data structure, the wideband atmospheric 
quantities returned by SMART, and the previously converted properties, as presented in Section 
5.2.1. 

Inside SMAT, a combo box inside an analysis dialog box (Figure 11) allows the user to set if the 
process shall be executed in wideband-ck or in spectral mode. 
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Figure 11: Setting the execution mode (wideband-ck/spectral) in SMAT during an analysis. 

 

 



 
 

24 DRDC Valcartier CR 2011-167 
 
 
 
 

6 Antialiasing 

One limit of infrared scene generation is that platforms can be located very far in front of infrared 
sensors and subtend only few pixels or less than one pixel. Depending on the sampling method 
used, platforms may have a poor representation, or even worst, not be represented at all on the 
screen, even if the sensor is supposed to detect energy (referred as the apparent radiance). This 
will lead to radiometric inaccuracies, affecting sensors based on the IRSG and therefore, the 
results of the engagements.  

Sampling is the process during which a continuous function is mapped on a discrete one. This 
mechanism is used in computer rendering process to map analog data on a digital system. Since a 
pixel is the smallest unit of a computer graphic (it is filled or not i.e. cannot be partly filled), it 
will then produce jagged edges on objects where the pixel grid is visible. Sampling methods can 
also produce scintillation phenomenon when an object is moving and crossing pixel boundaries, 
producing a rapid variation of the color. 

To reduce these phenomena, antialiasing techniques were developed. Among these, a technique 
more appropriate for the purpose of infrared scene generation is called zoom antialiasing (ZAA). 

6.1 Zoom antialiasing technique 

Rather than supersampling over the entire screen, the zooming window technique allows 
supersampling areas of the screen that are susceptible of causing aliasing artefacts. Ref. [8] 
describes a procedure that renders only portions of the screen at higher resolution. More recently, 
[9] describes the implementation of the ZAA procedure in the GPU, which is named CgAA. The 
implementation is based on the Cg shader programming language and uses multiple rendering 
passes for reducing visual artefacts caused by aliasing.  

ZAA is much more efficient than full screen antialiasing (FSAA) because it focuses on areas of 
the screen where aliasing is more likely to occur. However, the implementation is more 
complicated since the algorithms are not embedded into the hardware (i.e. graphics card). 
Nevertheless, ZAA gives more control on the antialiasing technique and more precision regarding 
the calculated apparent radiance.  

In brief, ZAA consists to 1) produce high definition images (i.e. textures with way more samples 
than the number of pixels covered by the model) of each scene model; 2) produce accurate low 
definition images (i.e. textures with a number of texels near the number of pixels covered by the 
model) for each high definition image; and 3) substitute scene elements by their corresponding 
low definition images. This technique is described with more details in the following sub-
sections. 

6.1.1 Method description 

A basic approach based on the models’ bounding sphere was developed and may eventually be 
upgraded to obtain more accurate results. This technique is inspired by the approach presented in 
[9]. Notice that GLSL was chosen over CG because it is natively supported by OSG. 
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Phase 1: Produce high definition images of each scene’s element. 

General approach 

For each scene’s entity, i.e. 3D model, a high definition image is produced.  

Technical considerations 

For each 3D model in the scene, a zoom camera (osg::Camera) is created. The area covered by 
the bounding sphere in the main camera’s view is calculated in term of pixels. The zoom camera 
will adjust its field of view based on this value: if the value is a power of two, this value is taken; 
otherwise, the field of view is increased to reach a dimension (always a square) corresponding to 
a power of two. Notice that the minimum FOV is 2x2 pixels. A more accurate way would have 
been to zoom on the exact area covered by the model (see Figure 12) but this technique is more 
complicated to implement. The downsampling process used in the following phase is eased given 
the fact that the image generated by the zoom camera is square and a power of two. 

 

Figure 12: Zoom camera view based on bounding sphere (solid line) compared to view based on 
exact model extends (dashed). 

After the zoom camera is set, it renders its view into a texture. Notice that there is no background 
(e.g. skybox, sun) in the zoom camera view: it is only viewing one 3D model. This also means 
that a zoom camera does not see two models in its view if models are one beside the other or one 
behind the other. The size of this texture depends on the user selection. The current system allows 
selecting a dimension of 512x512, 256x256 or 128x128 pixels, depending on the performance 
and precision desired. The mechanism that allows choosing the size is explained in Section 6.1.2. 
Notice that the origin of the zoom camera(s) is the same as the main camera to respect the object 
perspective (see Figure 13). 
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Figure 13: An example showing frustra for the main scene's camera and a zoom camera. 

Phase 2: Post-process high definition images. 

General approach 

Each high definition image (texture) is reduced to the size the image must fit in.  

Technical considerations 

Shaders are used during this phase to regroup texels in order to reduce images to the size 
mentioned in the previous phase. Two shaders were defined for the downsampling process. The 
first one allows using 4 samples of the input texture (2x factor); and the second one, by using 16 
samples of the input texture (4x factor) as demonstrated in Figure 14. 

 

Figure 14: General downsampling process (2x and 4x). 

Thus, the texel value (i.e. color) in the downsampled texture is the average of 4 or 16 samples, 
depending on the downsampling factor. By applying multiple combinations of these shaders, one 
after another, it is possible to reduce the input texture (which is a power of two) to the size of the 
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output texture (which is also a power of two) as shown in Figure 15. Consequently, a maximum 
of 4 passes are necessary to downsample the worst case scenario: from 512 pixels to 2 pixels (512 
/4 128 /4 32 /4 8 /4 2). 

 

Figure 15: Multi-pass downsampling with shaders. 

The downsampling task is realized via OSG objects with the help of shaders and cameras. An 
example of the process is depicted in Figure 16. This example shows how to downsample from a 
512x512 pixels texture to a size of 128x128 pixels. 

 

Figure 16: Downsampling process via OSG. 
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The steps introduced in the previous image are explained below. 

1. A zoom camera takes a snapshot of its associated 3D model in high definition: 
512x512 pixels (could also be 256x256 or 128x128 depending on the user selection). 

2. This high definition texture is the input of a first downsampling pass. 

3. A new camera is created and its viewport is set to the desired downsampling size i.e. 
128x128 (as mentioned previously, ZAA’s shaders can reduce the input size by a 
factor 2x or 4x). A quad is added as a child to this camera to receive the 
downsampled texture. 

4. The high definition texture is an input of the shader.  

5. The shader downsamples the texture and assigns a color to each fragment of the 
quad. 

6. The camera takes a snapshot of the quad, producing the downsampled texture. 

7. This new texture is the final one in this example, but it could have been the input of 
another downsampling pass if required. 

 

Phase 3: Replace each scene’s element by its low definition image. 

General approach 

For each element of the scene, create a quad, which shall replace the original 3D model, facing 
the camera; and apply the low definition texture generated previously on that quad. 

Technical considerations 

The ZAA capacity uses osg::Billboard in order to create a quad in the scene which will hold a 
texture to be displayed. Basically, billboards are quads which rotate around an axis or a point. 
They are often used in 3D environments to represent a tree, rotating about its Z axis to give the 
impression of a 3D object to an observer located on the ground. For the ZAA needs, quads will 
rotate about their center to always face the camera. The advantage for the ZAA capacity is that it 
does not need to calculate rotation to be applied on quads for each frame, since this is 
automatically done via the internal processing of billboards. 

To ease the process of replacing a model by its corresponding quad, the system takes advantage 
of the level-of-detail (LOD) mechanism. In general, a LOD object uses a model with a higher 
number of polygons when located near the camera and switches to a model containing fewer 
polygons when moving away from the camera (range based). Another kind of LOD, least known, 
is also available, which is more appropriate to the context of antialiasing. This second LOD bases 
its “switch” mechanism (from a model to another one) on the size of the initial model bounding 
sphere diameter into a camera’s view. The result is the same as the range based LOD: passed a 
certain distance, the LOD will display a different geometry. However, it is easier and more 
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intuitive to specify that when a model covers X pixels, to activate the ZAA and replace it by a 
quad. Notice that the minimum quad size displayed is 2x2 pixels. 

In the current implementation, three modes can be selected by the user: 

1. ZAA 128 pixels; 

2. ZAA 256 pixels; and 

3. ZAA 512 pixels. 

The mode selected specifies the dimension of the camera’s viewport but also the size at which the 
LOD will replace the 3D model by a quad (threshold value as depicted in Figure 17). For 
example, if the first mode is selected i.e. ZAA 128 pixels, the “high definition” image generated 
by the zoom camera will be 128x128 pixels and the 3D model will be replaced by a quad when 
the model’s bounding sphere dimension is less than 128 pixels. 

3D model

quad

Far plane

Near plane

Model bounding sphere 

dimension < threshold

Model bounding sphere 

dimension >= threshold

 

Figure 17: Switching between the 3D model and a quad during ZAA process. 

Finally, a render to texture phase will produce the final frame corresponding to the sensor’s view. 
During the rendering process, each quad is rasterized, and fragments receive their color from the 
downsampled texture. Since there is not a 1 on 1 correspondence for texels of the generated 
texture and screen pixels (i.e. texels are the same size but do not line up exactly with the pixels of 
the display), there will be a sampling error when rendering the final frame. Various sampling 
methods are available with OpenGL (nearest, bi-linear, etc.). The sampling error is, of course, 
affected by the method selected and the choice of a sampling method compared to another will 
affect the performance of the rendering process. As a compromise between speed and precision, 
the bi-linear interpolation method was selected. Notice that a blending mechanism is used to 
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merge each quad’s texture and the background in the generated image. The global ZAA process is 
resumed in Figure 18. 
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Figure 18: An overview of the ZAA process. 
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6.1.2 Zoom antialiasing activation 

Inside the KARMA framework, it is possible to configure the antialiasing method for an 
ImagingSensor through its XML parameters file, using the parameter AntialiasingMode 
(contains a predefined value): 

• 0: None; 

• 1: Supersampling 2x; 

• 2: Supersampling 4x; 

• 3: Zoom antialiasing 128 pixels; 

• 4: Zoom antialiasing 256 pixels; and 

• 5: Zoom antialiasing 512 pixels. 

Inside the SMAT tool, the Options dialog box shall be used to select the antialiasing mode which 
will be applied during the analysis as shown in Figure 19. 

 

Figure 19: Zoom antialiasing activation within SMAT. 

6.1.3 Troubleshooting 

3D models may contains range based LOD(s). To be used with ZAA, it is highly recommended to 
remove any LOD(s) inside models with an appropriate model editor. Otherwise, the textures 
generated could be empty (except for the background) i.e. the model is hidden because it is 
located farther than the range defined by the maximal range LOD. Also, it is undesirable that the 
zoom camera renders an intermediate LOD i.e. a model containing fewer polygons than the full 
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details LOD. Eventually, LODs could be deactivated directly in the code or the range limit could 
also be increased. 

6.1.4 Results 

In this section, some results obtained via the SMAT tool are presented to show the performance 
and precision of the ZAA modes compared to other antialiasing mechanisms.  

6.1.4.1 Performance 

The time required to generate an image was monitored for each antialiasing methods; and when 
no antialiasing method (baseline) is applied. The CC130 model was used during those tests. 
Figure 20 shows the parameters used during the analysis. The distance at which the model is 
located from the sensor (Distance parameter in Figure 20) is changed to obtain results at various 
ranges. Rendering times are presented in Figure 21 

 

Figure 20: Parameters used for the ZAA performance analysis. 
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Figure 21: Time (ms) required to produce one image for the available antialiasing algorithms 
and when the platform (CC130) is located at various ranges (m).  

6.1.4.2 Accuracy 

To analyze the accuracy of antialiasing methods, the SMAT range plot analysis was used to 
generate graphs showing the contrast intensity as a function of range. The plots are generated 
without atmospheric attenuation and path radiance. The parameters used during those tests are 
shown in Figure 24. As a result, the variations of intensity with range represent the radiometric 
errors due to aliasing effect. The values obtained with the different antialiasing modes are 
presented in Figure 22. Considering that the results for the ZAA modes are not clearly visible, 
Figure 23 shows the results only for these modes. Notice that a simple sphere model, which has a 
radius of 1 meter, was used during those tests. It must be noted that the results are valid for the 
sensor settings (resolution and FOV) presented in Figure 24.  
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Figure 22: Contrast intensity vs. range for various antialiasing modes. 

 

Figure 23: Contrast intensity vs. range for ZAA modes only. 
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Figure 24: Parameters used for the ZAA accuracy analysis. 

6.1.4.3 Discussion 

The time required to produce an image, for the ZAA methods, increase when the platform is 
located far from the camera (c.f. Figure 21). Given the current implementation, this is expected 
because more downsampling passes are required as a model covers fewer pixels. At far distances, 
the ZAA methods take a lot of time to execute when compared to Supersampling 4x. In the 
context of infrared guided weapon engagement simulations (distance smaller than 10,000 m.), the 
rendering times for the ZAA methods are comparable to the supersampling mechanism. The first 
iteration of the ZAA development focused on mechanisms development to increase accuracy i.e. 
no performance optimizations were done. A second iteration would allow reducing execution 
times for the ZAA methods. 

The contrast intensity values obtained at various ranges clearly indicates that the results obtained 
under a reasonable distance (60,000 meters) are better with the ZAA modes than the 
supersampling modes. Note that the 3D model covers 34.64 pixels in the sensor’s view at 1000 
meters, and 0.5774 pixel at 60,000 meters. 
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6.2 OSG rendering library 

To implement the ZAA approach described in Section 6.1, new methods were required to 
manipulate OSG objects as well as some debugging methods. A library was developed to gather 
the new functionalities. 

To ease reutilization and maximize modularity, the library is divided into three packages as 
depicted in Figure 25. A first package contains high-level functionalities for the ZAA capacity 
(ZoomAntialiasing). This package uses a second one containing methods allowing multi-pass 
rendering (MultipassRendering). These two packages use a third one which contains basic OSG 
methods to efficiently manage OSG objects (OsgUtilities). 

ZoomAntialiasing MultipassRendering

OsgUtilities

 

Figure 25: The packages defined in the OsgRendering library. 

Figure 26 presents an overview of the classes defined in the library. These classes are explained 
in the following sections. 
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Figure 26: OsgRendering class diagram. 

6.2.1 Zoom antialiasing capacity 

As mentioned previously, a simple technique was developed but more sophisticated algorithms 
may also be deployed in the future. Thus, a system supporting multiple techniques is required. 
The algorithm may also have to be changed during a simulation to adapt to the current context. 
For example, it shall be possible to use an algorithm if an object subtends less than 1 pixel and 
another one if more than 1 pixel. To this end, a design pattern, named Strategy pattern, is used to 
ease the development by providing a mechanism to switch from one algorithm to another. The 
modularity that this approach brings allows defining new algorithms without having to change the 
architecture. Figure 27 shows the architecture that was defined. 

PixelSizeBasedLod

m_currentSize : float
m_lastLodIndex : int
m_identifier : std::string
m_verboseSwitches : bo...

PixelSizeBasedLod()
~PixelSizeBasedLod()
<<virtual>> traverse()
GetCurrentSize()

(from OsgRendering)

Uti l ityFunctions

<<static>> AddBoundingBoxCorners()
<<static>> AddBoundingBoxVolume()
<<static>> AddBoundingSphereVolume()
<<static>> DrawFrustumFromCamera()
<<static>> UpdateZoomCameraPositionLookAtAndFov()
<<static>> CameraLookAtNode()
<<static>> AdjustCameraFovBasedOnNodeBoundingSphere()
<<static>> CalculatesBoundingSphereDimensionInScreenSpace()
<<static>> GetNextPowerOfTwo()
<<static>> GetViewDimensions()
<<static>> GetScreenDimensions()
<<static>> RotateCamera()
<<static>> FrustumWidthAtPosition()
<<static>> CreateSquare()
<<static>> AdjustFovBasedOnNextPowerOfTwoSize()
<<static>> ViewCameraInsideViewport()

(from OsgRendering)

ZoomAntial iasingManager

m_viewer : osgViewer::Viewer*
m_zaaScene : osg::Group*
m_lastUsedStrategy : int
m_disableLights : bool
m_disableTextures : bool
m_drawCallback : osg::Camera::DrawCallback*

ZoomAntial iasingManager()
~ZoomAntialiasingManager()
Update()
ChooseZoomAntialisingStrategy()

(from OsgRendering)

AbstractZoomAntialiasingStrategy

AbstractZoomAntialiasingStrategy()
<<virtual>> ~AbstractZoomAntialiasingStrategy()
<<abstract>> Update()

(from OsgRendering)

-m_currentStrategy

RttPass

m_offscreenTexture : osg::ref_ptr<osg::Texture2D>
m_image : osg::ref_ptr<osg::Image>

RttPass()
~RttPass()
GetOutputTexture()
CreateTexture()
SetupCamera()
CheckConfiguration()

(from OsgRendering)

DownsamplingPass

m_rootGroup : osg::ref_ptr<osg::Group>
m_camera : osg::ref_ptr<osg::Camera>
m_inTexture : osg::ref_ptr<osg::Texture2D>
m_outTexture : osg::ref_ptr<osg::Texture2D>
m_textureWidth : int
m_textureHeight : int
m_fragmentProgram : osg::ref_ptr<osg::Program>
m_stateSet : osg::ref_ptr<osg::StateSet>
m_image : osg::ref_ptr<osg::Image>

DownsamplingPass()
~DownsamplingPass()
GetRoot()
GetOutputTexture()
InsertFloatUniform()
AddSamplerUniform()
SetFragmentShader()
CreateTexturedQuad()
CreateOutputTexture()
SetupCamera()

(from OsgRendering)

MultipassComposer

m_rootGroup : osg::ref_ptr<osg::Group>
m_quadXForm : osg::ref_ptr<osg::PositionAttitudeTransform>
m_geode : osg::ref_ptr<osg::Geode>

MultipassComposer()
~MultipassComposer()
Update()
GetRoot()
CreateQuad()
UpdateQuadLocation()
GetQuad()

(from OsgRendering)

-m_zeroPass

-m_firstPass

-m_secondPass

-m_thirdPass

-m_fi fthPass

-m_fourthPass

ZoomEntityInfo

m_zaaLod : osg::ref_ptr<OsgRendering::PixelSizeBasedLod>
m_node : osg::ref_ptr<osg::Node>
m_zoomCamera : osg::ref_ptr<osg::Camera>
m_distanceToMainCamera : float
m_alwaysDisplayQuad : bool

ZoomEntityInfo()
~ZoomEntityInfo()
GetNode()
GetZoomCamera()
GetMultipassObject()
SetDistanceFromMainCamera()
GetDistanceFromMainCamera()
SetMultipassObject()
GetZaaLod()
SetZaaLod()
SetAlwaysDisplayQuad()
GetAlwaysDisplayQuad()

(from OsgRendering)

-m_multipassComposer

Sil lsBasedStrategy

m_viewer : osgViewer::Viewer*
m_zaaScene : osg::Group*
m_quadsAndCamerasGroup : osg::ref_ptr<osg::Group>
m_disableLights : bool
m_disableTextures : bool
m_zoomEntitiesInfo : std::vector<ZoomEnti tyInfo*>
m_drawCallback : osg::Camera::DrawCallback*

Sil lsBasedStrategy()
~SillsBasedStrategy()
Update()
SortQuadsAndZoomCamerasBasedOnDistance()

(from OsgRendering)
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Figure 27: Zoom antialiasing capacity as a strategy pattern. 

• IRSG is the module which uses the zoom antialiasing capacity; 

• ZoomAntialiasingManager controls the creation of strategies and which strategy shall be 
used; 

• AbstractZoomAntialiasingStrategy is a base class from which each ZAA strategy 
needs to inherit from; and 

• SillsBasedStrategy is the current developed strategy based on the works of [9]. 

6.2.2 Multi-pass rendering 

A multi-pass capacity is necessary as it allows the use of multiple fragment shaders, one after the 
other, to generate a single frame. For example, it is possible to use multiple shaders to 
downsample a texture instead of using only one. Figure 28 depicts a generic view of what is 
currently possible with the capacity: during a render stage, a texture is consecutively modified by 
a series of shaders.  

 

Figure 28: Generic multi-pass view. 

SillsBasedStrategy

SillsBasedStrategy()
~SillsBasedStrategy()
Update()
SortBasedOnDistances()

(from OsgRendering)

AbstractZoomAntialiasingStrategy

AbstractZoomAntialiasingStrategy()
~AbstractZoomAntialiasingStrategy()
<<abstract>> Update()

(from OsgRendering)
IRSG

(from SceneGenerator)

ZoomAntialiasingManager

ZoomAntialiasingManager()
~ZoomAntialiasingManager()
Update()

(from OsgRendering)
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6.2.2.1 Pass aggregator 

MultipassComposer is a class responsible to create the pipeline of passes that a texture must pass 
through during rendering. A render to texture pass can be used to generate the first texture which 
will be used as input of the following pass. At this moment, downsampling passes can be used in 
the next passes to reduce the size of the texture. 

6.2.2.1.1 Render to texture pass 

The render to texture (RTT) technique, also called off-screen rendering, allows rendering a scene 
into a texture i.e. a buffer is copied into a texture. The frame buffer object (FBO) extension 
allows RTT in a platform-independent way. RTT is commonly used to implement a variety of 
image filters and post-processing effects by capturing images that would normally be drawn to 
the screen. RttPass can be used to accomplish this task. 

6.2.2.1.2 Downsampling pass 

The class DownsamplingPass is used to downsample an input texture by a factor 2 or 4. 

6.2.3 Utilities 

Some utility functions, regrouped in the class UtilityFunctions, were also developed to help 
manipulating OSG objects. 

It allows: 

• quads manipulation to receive a texture; 

• cameras manipulation, to control field of view, position/rotation. It is also possible to 
create a geometry which represents the frustum of the camera (see Figure 29). This is 
purely a feature to help the debugging process, to see the zoom camera’s frustum 
compared to the main camera’s frustum for instance (as previously show in Figure 13); 

 

Figure 29: Camera’s frustum representation. 
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• bounding volumes representation which can help validating the overall zoom antialiasing 
effort (see Figure 30). 

 

 

Figure 30: Bounding box (left) and bounding sphere (right) representation of a 3D model. 

6.2.4 Object’s size based level-of-detail 

PixelSizeBasedLod is a class which inherits from osg::LOD. The process to switch from an 
object to another one, when the first object reaches a certain size, is already defined in the 
superclass. PixelSizeBasedLod simply: 

• keeps the currently calculated size in a member variable available via an accessor; 

• writes a message in the console when a switch occurs (from a 3D model to the quad; and 
vice versa). 
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7 Background 

Prior to this contract, the background representation was really simplistic. A uniform background 
was assumed based on a spectrum value defined in the Environment parameters file: the resulting 
color, computed by the SceneGenerator3D, was associated to each pixel of the background, 
without considerations of the altitude, the LOS, etc. Thus, to enhance the background 
representation, various mechanisms were developed. The first step was to implement variations of 
the background value according to the value returned by the atmospheric model for given sensor 
altitude and LOS. The apparent background radiance is then computed as: 

( ) ( )dbkgr
app bkgr sensL L R= λ λ λ . (4)

In the following sections, the definition of a non-uniform background, created from samples taken 
at multiple LOS within a frame, is presented. The blending of textures with this background to 
create clutter effects is also documented. 

7.1 Multiples background values 

A uniform background is now defined using a single value taken in the middle of a sensor field of 
view and applied to each pixel of the background. A non-uniform background is created by 
obtaining multiple values from different LOS and by placing the values at the appropriate 
position on the background. An interpolation between those values is done to fill the remaining 
space between the calculated values. Figure 31 shows the two mechanisms that can be used. 

 

Figure 31: Single background value (from 1 LOS) vs. multiple values (from 4 LOS). 
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7.1.1 Background geometry 

The background geometry is defined with a series of GL_QUAD_STRIP. The apparent background 
radiances are associated to the vertices of this geometry, and OpenGL interpolation is performed 
between the vertices.  

A QUAD_STRIP is a group of connected quadrilaterals. One quadrilateral is defined for each pair of 
vertices presented after the first pair. Note that the order in which vertices are used to construct a 
quadrilateral from strip data is different from that used with independent data. Figure 32 shows 
the difference between the GL_QUADS and GL_QUAD_STRIP. 

 

Figure 32: GL_QUADS vs. GL_QUAD_STRIP. 

Figure 33 shows how the background geometry is constructed with GL_QUADS_STRIP and the 
result of the interpolation. 

 

Figure 33: Interpolation within the QUAD_STRIP. 
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The geometry has a color binding property that needs to be set with BIND_PER_VERTEX to be able 
to use a different color (radiance value) for each vertex. The vertex and fragment shaders 
presented in Table 12 and Table 13 are also required to get interpolated colors between those 
vertices. When a constant background is used, the color binding is set to BIND_OVERALL. It tells 
OpenGL to consider only one color per geometry instead of per vertex. 

Table 12: Vertex shader for the background geometry. 

 
varying vec4 vertexColor; 
 
void main(void) 
{ 
    vertexColor = gl_Color; 
    gl_Position = ftransform(); 
} 

 

Table 13: Fragment shader for the background geometry. 

 
varying vec4 vertexColor; 
 
void main(void) 
{ 
    gl_FragColor = vertexColor; 
} 
 

 
In KARMA simulations, the parameters file of an ImagingSensor allows to control the 
uniform/non-uniform background, via the IsUniformBackground parameter. To define a non-
uniform background, the parameters NumberOfBackgroundColumns and 
NumberOfBackgroundRows shall be used. 
 
In SMAT, the Options dialog box, shown in Figure 34, allows to control the 
activation/deactivation of the non-uniform background. If the non-uniform background is 
selected, the user can enter the number of rows and columns to be used to represent the 
background. 
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Figure 34: Using the non-uniform background in SMAT. 

7.1.2 Using SMART to obtain background values 

An important consideration with the non-uniform background is that SMART shall be used to 
obtain different values for each LOS. For KARMA simulations, if the AtmosphereSmart model is 
not in the Environment composition, a default behaviour will take place. This behaviour depends 
on the calculation mode of the ImagingSensor model (see CalculationMode parameter). 

• In spectral mode, a default background value will be returned by the Environment based 
on the spectrum defined in its parameters file (see BackgroundRadianceWavelengths 
and BackgroundRadianceValues parameters); 

• In wideband-ck mode, a default background value will be returned by the Environment 
(NULL is returned).  

Inside SMAT, the parameters of an analysis allow selecting SMART to compute the background 
radiance, as shown in Figure 35, in order to have a non-uniform background (if this feature is 
activated in SMAT Options dialog box). 
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Figure 35: Using SMART to calculate background radiance in SMAT. 

7.2 Sky and terrain textures 

The multiple point background presented above can reproduce realistic values of background 
radiance within a frame. However, it may not be sufficient when sources of clutter, such as clouds 
or land, need to be represented. As presented below, the previously discussed background can 
then be blended with sky and land textures to further increase the scene realism. 

7.2.1 Skybox 

In video games, the background is often simulated by encapsulating the game level into a cube 
with carefully chosen textures on each face. These textures are used to represent distant objects 
such as the sky, mountains or unreachable buildings to give the impression that the background is 
infinite. Moreover, it is common for the skybox to remain stationary with respect to the viewer. 
This technique enforce the illusion of being very far away since other objects in the scene appear 
to move, while the skybox does not. Figure 36 shows an example of skybox. 

 

Figure 36: An example of skybox. 
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Notice that the skybox texture shown above includes a sun. It would be preferable to not have this 
artefact embedded in the texture since the sun is already modeled has an entity in the scene (more 
details are presented below). Otherwise, the sun located on the skybox texture would appear with 
wrong position and radiance on the images generated by the IRSG. 

7.2.2 Terrain geometry 

The skybox gives a good realistic effect when the sensor FOV contains sky and far away land 
only. However, as the skybox remains stationary with respect to the sensor (i.e. follows the 
sensor), the skybox is not suited to reproduce the relative motion of terrain seen from a sensor. 
Whenever sources of moving clutter are needed, a fully textured terrain geometry representing a 
real terrain can be used as shown in Figure 37. The terrain geometry does not remain stationary 
with respect to sensor as the skybox does; it rather uses a fixed position in the scene. 

 

Figure 37: An example of terrain geometry. 

7.2.3 Skybox and terrain in IRSG 

The fragment shader shown in Table 14 is used to scale each pixels of the original texture (for 
both skybox and terrain) before being combined with background radiance pixels as detailed in 
Section 7.4. The color to radiance scaling can be customized with the textureRadianceSlope 
and textureColorOffset parameters. textureRadianceSlope represents the variation of 
radiance associated with a variation of 1 (from pure black to pure white) in texture color, while 
textureColorOffset is the texture color value (between 0 to 1) producing no variation in 
background radiance. Texture values above textureColorOffset are additive, while values 
below are subtractive. 

Table 14: Fragment shader for the skybox and terrain. 

 
uniform sampler2D texture; 
uniform float textureRadianceSlope; 
uniform float textureColorOffset; 
 
void main (void) 
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{ 
    vec4 textureColor = texture2D(texture,  gl_TexCoord[0].st); 
    float finalRed = textureRadianceSlope * ( textureColor.r - textureColorOffset); 
    gl_FragColor = vec4(finalRed, 0.0, 0.0, 1.0); 
} 
 
For KARMA simulations, the textureRadianceSlope and textureColorOffset parameters 
(for the skybox and the terrain) are defined for each ImagingSensor, in their parameters file. Two 
booleans allows controlling the activation of these features: UseSkyboxBackground and 
UseTerrainBackground. The skybox textures and terrain already defined in Environment are 
also reused. 
 
In the case of SMAT, Figure 38 shows where the skybox and terrain parameters can be modified 
in the Options dialog box. The terrain is currently hardcoded to use the following model: 
$(KARMA_ROOT)\Utilities\ViewerDelta3d\3dModels\Releasable\Terrain\ArabTown.k3d. 
For the skybox, the following textures are used: 
 

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\S.jpg; 
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\N.jpg; 
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\W.jpg; 
• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\E.jpg; 

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\Up.jpg; and 

• $(KARMA_ROOT)\\Utilities\\SMAT\\skybox\\current\\Down.jpg. 

  

 

Figure 38: Using a skybox and terrain to model the background in SMAT. 
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7.3 Solar disc in IRSG 

The solar disc is implemented as a 3D sphere into the scene. It always appears with a 0.53 degree 
diameter in the sensor’s FOV. Like the skybox, the solar disc remains stationary with respect to 
the sensor. Its position relative to the sensor is set using sun azimuth and elevation defined in 
Environment. Its apparent radiance is given by 

( ) ( )1
appsun sun

sun

L E R d= λ λ λ
Ω  , (5)

where Ωsun is a constant equal to 6.72x10-5 (with 0.53º  angular size), Esun(λ) is the sun irradiance 
at sensor’s position (returned by the atmosphere model), and R(λ) is the sensor’s spectral 
response. The simple fragment shader shown in Table 15 is used to set the color of the sun. 
 
The sun disc is always activated in KARMA simulations. Figure 39 shows the activation 
parameter for the sun disc inside the Options dialog box in SMAT. 

Table 15: Fragment shader for the sun. 

 
uniform float sunRadiance; 
 
void main (void) 
{ 
    gl_FragColor = vec4(sunRadiance, 0.0, 0.0, 1.0); 
} 

 
 

 

Figure 39: Activating the solar disc in SMAT. 
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7.4 Rendering 

In order to achieve a realistic effect, the background geometry needs to be blended with the 
skybox and the terrain. However, the terrain needs to occlude the skybox without any blending 
between these two geometries. To achieve this, both are rendered opaquely before being blended 
(additive) with the background geometry (defined in section 7.1.1). 

7.4.1 Pre-render camera 

OSG offers multiple mechanisms to control rendering order of geometries. Since the background 
geometry needs to be rendered over the entire FOV, it needs to be rendered using an orthogonal 
projection matrix, associated with a pre-render camera (it cannot be done using a single camera). 
This kind of feature is widely used in video games when rendering heads-up display (HUD) over 
the game scene.  

As shown in Table 16, two pre-render cameras are needed to control the rendering order before 
the main camera renders the scene. The first camera renders the skybox, the sun and the terrain 
(in this order) using a perspective projection matrix into the texture. The next camera renders the 
background geometry over the same texture using an additive blending function. This blends the 
radiance variations caused by sun, skybox, and terrain with the radiance from the atmosphere 
models (associated to the background geometry).  

Table 17 details the equation of the background geometry blending function. Figure 40 shows 
how a non-uniform background, i.e. the multiple background values computed using SMART, is 
combined with the skybox. 

 

Table 16: Using two pre-render cameras before the main camera. 

 
// draw the background first 
m_backgroundCamera->setRenderOrder(osg::Camera::PRE_RENDER, 1); 
m_environmentCamera->setRenderOrder(osg::Camera::PRE_RENDER); 
 
// Background and environment camera both render into the FBO 
m_backgroundCamera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT); 
m_backgroundCamera->attach(osg::Camera::COLOR_BUFFER0, 
m_offscreenTexture.get(),0,0,false,0,0); 
 
m_environmentCamera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT); 
m_environmentCamera->attach(osg::Camera::COLOR_BUFFER0, 
m_offscreenTexture.get(),0,0,false,0,0); 
 
// Add the camera to the viewer 
m_viewer->addSlave(m_backgroundCamera, false); 
m_viewer->addSlave(m_environmentCamera, false); 
 
// The GL_COLOR_BUFFER_BIT MUST be cleared with opaque black 
m_environmentCamera->setClearColor(osg::Vec4f(0.0f,0.0f,0.0f,1.0f)); 
 
// The GL_COLOR_BUFFER_BIT must NOT be cleared 
m_backgroundCamera->setClearMask(GL_DEPTH_BUFFER_BIT); 
m_viewer->getCamera()->setClearMask(GL_DEPTH_BUFFER_BIT); 
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Table 17: Blending function when rendering the background geometry. 

 
Destination factor = (Dr, Dg, Db, Da) = (1, 1, 1, 1) and source factor = (Sr,Sg,Sb,Sa) = (1, 
1, 1, 1) 
(R, G, B, A) = (RsSr + RdDr, GsSg + GdDg, BsSb + BdDb, AsSa + AdDa) 
(R, G, B, A) = (Rs(1) + Rd(1), Gs(1) + Gd(1), Bs(1) + Bd(1), As(1) + Ad(1))  
(R, G, B, A) = (Rs+Rd, Gs+Gd, Bs+Bd, As+Ad) 

 

 

Figure 40: Processing of the final background image. 

7.5 KARMA architecture 

Figure 41 and the following text show the modifications that were done to the KARMA 
architecture to make possible the changes discussed previously in this section of the report. 
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Figure 41: Non-uniform background class diagram. 

• The BackgroundGeode class encapsulates a background geometry used to provide a 
uniform or non-uniform background in the IRSG. When the background is uniform, one 
color (radiance) is assigned to the whole geometry while one color is assigned to each 
vertex when the background is non-uniform. 

• The Skybox class encapsulates the skybox. The skybox is parameterized using six 
textures and two uniform variables.  

• The TerrainGeode class encapsulates the terrain geometry. The terrain is parameterized 
using a 3D model and two uniform variables.  

• The SunGeode class encapsulates the solar disc geometry. No texture is required since 
the geometry is uniformly colored dynamically using sun radiance at the sensor’s 
location. 

• The MoveEarthSkyWithEyePointTransform class contains the transformation to allow a 
osg::Node to follow the eye point (sensor). This is used by the skybox and the sun to 
give the impression that they are located at an “infinite” distance. 

• The IRSG class handles background camera, background switch, skybox activation and 
served as interface to other classes (BackgroundGeode, Skybox and SensorCkData). 

• The ImagingSensor contains the background and skybox parameters to allow a 
configuration for each sensor. 

SensorCkData

m_solarCkBackgroundRadianceVector : std::v ector<KARMA::WidebandTy pe*>
m_thermalCkBackgroundRadianceVector : std::v ector<KARMA::WidebandTy pe*>

GetBackgroundRadiance()
SetBackgroundRadiance()

Sky box

m_geode : osg::ref _ptr<osg::Geode>
m_xForm : osg::ref _ptr<Mov eEarthy Sky WithEy ePointTransf orm>
m_textureList : osg::ref _ptr<osg::Texture2D> [6]
m_geometries : osg::ref _ptr<osg::Geometry > [6]

Sky box()
<<v irtual>> ~Sky box()
Conf igure()
SetTexture()
Conf igureShading()
MakeBox()
SetParameters()
GetParameters()

BackgroundGeode

m_numberOf Rows : unsigned int
m_numberOf Columns : unsigned int
m_backgroundGeometry  : osg::ref _ptr<osg::Geometry >
m_isUnif ormBackground : bool

BackgroundGeode()
BackgroundGeode()
<<v irtual>> ~BackgroundGeode()
UpdateGeometry ()
SetUseUnif ormBackground()
IsUnif ormBackground()
SetColorArray ()
<<const>> GetNumberOf Rows()
<<const>> GetNumberOf Columns()

IRSG

m_backgroundCamera : osg::ref _ptr<osg::Camera>
m_backgroundRadianceVector : std::v ector<KARMA::Spectrum*>
m_backgroundSwitch : osg::ref _ptr<osg::Switch>
m_currentSensorId : int
m_preDrawCallback : osg::ref _ptr<osg::Camera::DrawCallback>
m_root : osg::ref _ptr<osg::Group>
m_sensorBackgroundGeodes : std::map<int,BackgroundGeode*>
m_sensorsCkData : std::map<int,KARMA::SensorCkData*>
m_shaderProgram : osg::ref _ptr<osg::Program>
m_sky box : osg::ref _ptr<Sky box>
m_sky boxSwitch : osg::ref _ptr<osg::Switch>
m_sun : osg::ref _ptr<SunGeode>
m_sunSwitch : osg::ref _ptr<osg::Switch>
m_terrain : osg::ref _ptr<TerrainGeode>
m_terrainSwitch : osg::ref _ptr<osg::Switch>
m_useSun : bool
m_useWidebandMode : bool

Activ ateSky box()
Activ ateSun()
Activ ateTerrain()
AddBackground()
AddSky Box()
AddSun()
AddTerrain()
GetBackgroundNumberOf Columns()
GetBackgroundNumberOf Rows()
GetTerrainParameters()
IsSky BoxActiv ated()
IsTerrainActiv ated()
IsUnif ormBackground()
SetBackgroundParameters()
SetBackgroundRadiance()
SetCurrentSensorId()
SetSky boxParameters()
SetTerrainParameters()
SetUseUnif ormBackground()
Conf igureBackgroundCamera()
Conf igureEnv ironmentCamera()
<<const>> IsSunActiv ated()

Inherits f rom
osg::Transf orm

Inherits f rom
osg::Geode

Inherit f rom
osg::Group

ImagingSensor

<<XML>> m_isUnif ormBackground : DataTy pes::Boolean
<<XML>> m_numberOf BackgroundColumns : DataTy pes::Dou...
<<XML>> m_numberOf BackgroundRows : DataTy pes::Double

(from Sensor)

<<XML>>
Mov eEarthy Sky WithEy ePointTransf orm

Mov eEarthy Sky WithEy ePointTransf orm()
~Mov eEarthy Sky WithEy ePointTransf orm()
<<const,v irtual>> computeLocalToWorldMatrix()
<<const,v irtual>> computeWorldToLocalMatrix()

TerrainGeode

m_node : osg::ref _ptr<osg::Node>

TerrainGeode()
<<v irtual>> ~TerrainGeode()
Conf igure()
SetModel()
Conf igureShading()
SetParameters()
GetParameters()

SunGeode

m_sphereShape : osg::ref _ptr<osg::Sphere>
m_xForm : osg::ref _ptr<Mov eEarthy Sky WithEy ePointTransf orm>

SunGeode()
<<v irtual>> ~SunGeode()
Conf igure()
SetPosition()
SetRadiance()
MakeSphere()
Conf igureShading()
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8 Database properties 

For each model which participates in the scene generation process, a database file is associated to 
the 3D model file, and contains the infrared properties. In this section, the modifications that were 
made to the database are presented. 

8.1 User defined spectrum 

The signature of each model is characterized by materials and temperature properties, associated 
to material and temperature indexes in the 3D model. These features can be edited by the way of 
SMAT database editor dialog. Initially, the temperature was defined using an equation and then 
used in the Planck equation to compute radiance. A new approach called user defined spectrum 
has been added, allowing to define surface radiance using a combination of one or more radiance 
spectrums. These spectrums are called components. When this mode is used, the thermally 
emitted contribution to the apparent radiance as seen through the atmosphere is given, as opposed 
to equation (1), by 

( ) ( ) ( ) ( ) ( )0cos , , dtherm N
app scaling j j path sens

j

L c t L z R= ε θ φ λ τ λ λ λ , (6)

where Lj(λ) is the radiance spectrum of a component of index j and cj(t,φ) is its weighting factor 
according to the entity’s time and the angle between the entity’s orientation vector and the view 
vector. 

Some changes in SMAT database dialog editor window were necessary to support the user 
defined spectrum mode. The first change was to add a new tab to manage user defined spectrum 
importation. Figure 42 shows the tab in the database editor dialog to import a set of user defined 
spectrums. 
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Figure 42: User defined spectrum import tab. 

• The user defined spectrums are imported from a CSV file by using the Import button. The 
file is read and stored in the database file of a given signature model. A list of spectrum is 
displayed in the list on the left side of the tab. 

• It is possible to view imported data in table format by using the View button. 

• The Delete button can be used to clear imported spectrums. 

• The Spectrum reference distance is used to specify the distance used to measure the user 
defined spectrum (i.e. distance from the object). 

It is necessary to take into account Spectrum reference distance in atmospheric transmittance 
computation. As shown on Figure 43 two situations can occur. In the first situation (A), the sensor 
is within the reference distance (nearer), thus no additional transmittance is computed since it is 
already taken into account in the user defined spectrum. In the second situation (B) the sensor is 
outside the reference distance (farter), thus the atmospheric transmittance will be computed using 
the sensor distance minus the Spectrum reference distance (green distance). 
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Figure 43 : Spectrum reference distance. 

8.1.1 User defined spectrum file format 

The user defined spectrums are stored in a comma separated values (CSV) format. This format 
stores a table that is easy to see and modify using a commercial spreadsheet tool such as MS 
Excel. Table 18 shows an example of the file format. The first column of this table is the 
frequency values of the spectrums; all spectrums, referred as component, share the same 
frequency values. The first cell of this column defines the units of the frequency values: the tag 
“um” defines that the spectrum is given in wavelength while the tag “cm-1” indicates a spectrum 
defined in wave number. Internally, the spectrum is stored in wavelength; therefore the input data 
read in wave number is converted to wavelength. The following columns define the values for 
each spectrum component. The first cell of each column defines the name of the component; this 
name will be displayed in spectrum list as shown earlier in Figure 42. 

Table 18: User defined spectrum file format example. 

cm-1 BB(T1) BB(T2) BB(T3) CO2(T4) H2O
1900 7.76E-05 3.61E-05 2.24E-05 4.55E-05 0.000159
1902 6.75E-05 3.15E-05 1.96E-05 5.00E-05 0.000134
1904 4.53E-05 2.13E-05 1.32E-05 5.43E-05 9.03E-05
1906 2.08E-05 9.96E-06 6.28E-06 5.25E-05 4.59E-05
1908 1.46E-05 7.11E-06 4.53E-06 4.46E-05 3.26E-05

… … … … … …

8.1.2 Temperature properties 

The temperature tab of the database editor dialog has been modified to add the user defined 
spectrum mode settings. The Mode property has been added to allow selecting one mode or 
another. The former approach based on a temperature equation is still available using the Use 
Temperature mode as shown in Figure 44. The equation parameters have been grouped in a tab. 
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The properties of the selected mode are shown in a tab section to distinguish the properties of this 
mode and the user defined spectrum mode. 

 

Figure 44: Temperature tab with use temperature mode. 

Figure 45 shows the dialog in user defined spectrum mode. This mode allows the user to define a 
radiance spectrum using a combination of components (e.g. CO2, H2O) defined in the Spectrum 
tab. Notice that user defined spectrums must be imported as presented previously before using the 
user defined spectrum mode. 
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Figure 45: Temperature tab with user defined spectrum mode. 

The user can select angle and time factors to apply on each component of the spectrum using the 
Selection property. These factors can be defined with a constant or with a lookup table. 

• The lookup tables are imported from a CSV file by using the Import button. The file is 
read and stored in the temperature properties and a list of components is displayed in the 
list in the middle of the tab. 

• It is possible to view imported data in table format by using the View button. 

• The Time dependence lookup table allows the user to define temporal evolution of the 
factor for each component of the spectrum. The Use loop mode checkbox allows to define 
periodic time lookup table. 

• The Angle dependence lookup table allows the user to define angular evolution of the 
factor for each component of the spectrum. 

The lookup tables are stored in CSV format. Table 19 and Table 20 show an example of the file 
format for time and angle factor. The first column of the Angle dependence lookup table is the 
angle defined in degrees while the first column of the Time dependence lookup table is the 
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entity’s time defined in seconds. For both lookup tables, the first cell of this column should be 
empty. The following columns contain factors for each spectrum component. The lookup tables 
must use spectrums, using their name, already imported in the User defined spectrum tab.  

Table 19: Time dependence lookup table file format example. 

BB(T1) BB(T2) BB(T3) CO2(T4) H2O
0 0.5 0.7 0.1 0.1 0.1
1 0.6 0.8 0.2 0.2 0.2
2 0.7 0.9 0.3 0.3 0.3
3 0.8 1.0 0.4 0.4 0.4
4 0.9 1.0 0.5 0.5 0.5
… … … … … …

 

Table 20: Angle dependence lookup table file format example. 

BB(T1) BB(T2) BB(T3) CO2(T4) H2O
0 0.3 0.4 0.1 0.7 1.0

45 0.4 0.5 0.2 0.8 1.0
90 0.5 0.6 0.3 0.9 1.0

135 0.6 0.7 0.4 1.0 1.0
180 0.7 0.8 0.5 1.0 1.0
… … … … … …

8.2 Temperature lookup tables 

The temperature equation used in the Planck equation is now referred as Use temperature mode. 
Using this mode, the surface temperature is defined using an equation, as shown previously in 
Figure 44. Additional contributions have been implemented to allow modelling the temperature 
according to the entity’s conditions: its altitude, its speed and its power. The surface temperature 
is given by 

( ) ( ) ( ) ( )2
0 1 0.2 amb

surf amb
amb

T
T T aT rM f t f power f alt f M

T

 Δ= + + + + + + + 
 

, (7)

where f(power), f(alt) and f(M) are the power, altitude and speed lookup tables respectively. 

8.3 N angle factor 

The emissivity of a surface is defined spectrally in the material tab of the database editor dialog. 
This tab has been modified to include a property named N angle factor, as shown in Figure 46, 
which is used to reproduce emissive materials with either spatially uniform or spatially varying 
radiance. This property is used in the fragment shader presented in Section 4 to modulate the 
thermal radiance according to the view angle using the following factor: |cosN(θview)|, where N is 
the N angle factor and θview is the angle between the view vector and the surface’s normal. The 
factor is applied to the emissive component in both temperature and user defined spectrum 
modes, as shown in equations (1) and (6). Figure 47 shows the resulting factor as a function of the 
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view angle for different N angle factor. Therefore, a spatially uniform radiance is obtained when 
the N angle factor is 0 as the modulation factor is always 1 no matter the view angle. 

 

Figure 46: Material tab with the N angle factor. 

 

Figure 47: Modulation factor computed according to the view angle and for different N angle 
factors. 
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9 Scattering 

As a consequence of light scattering on aerosols, the atmosphere degrades images in terms of 
light intensity and sharpness. For example, an object that appears as a black and white 
chessboard, when seen at a certain distance, will eventually appear as a homogeneous gray square 
if it is seen at a farther distance. Figure 48 [10] shows contrasts fading as mountains are farther 
from the observer. This effect has been included in the IRSG by applying a filter on images. The 
filter is based on the modulation transfer function (MTF), i.e. the point spread function (PSF) in 
the frequency domain. 

 

Figure 48: Image degraded by the atmosphere. 

9.1 MTF database 

The stratified model used to generate the scattering induced MTF has been developed by 
Tremblay et al. and is explained in [11]. Figure 49 presents a reproduction of Figure 5 from [11]. 
It presents eight curves of the MTF as a function of the optical depth (OD) τ. This model has been 
used to create a MTF database to gather the variation of MTF as a function of optical depth for 
specific atmospheric conditions. A Matlab function has been used to write the MTF database 
binary file. The file format is described in Table 21. The first part of the file is the header. It 
contains MTF parameters than can be displayed to the user to identify the current database. 
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Figure 49: Reproduction of Figure 5 from [11]. “Comparison of MTF simulated with the 
Undique Monte Carlo simulator and the stratified model for water droplets 100 microns in 
diameter and 8 different optical depths. The gray lines show the stratified model results and the 
black superimposed lines show the Monte Carlo results” – the grey lines deviate from the dotted 
curves (Monte Carlo simulator) at high spatial frequencies since the optical system is included in 
the later. 

Table 21: Description of the MTF binary format. 

Type Description 

double FOV 

double FOI 

double Particle diameter 

double frequency 

int Number of MTF 

int Number of points in the MTF 

double * Number of points Frequency values 

For all MTF 

double tau 

double * Number of points MTF values 

For a given optical depth, the MTF is applied on an image as  
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The scaling factor before the inverse Fourier transform is necessary since atmospheric 
transmission is already taken into account by the IRSG. It is equivalent to 

( )
1

max
U S

U

P P

P MTF freq

+ =
, 

(9)

where MTF(max freq) corresponds to the asymptotic MTF value of the stratified model at high 
spatial frequency. This scaling factor is directly included while populating the database. Hence, 
the MTFs are normalized to one at high frequency.  

9.2 Using MTF for scattering 

The MTF is used inside the IRSG to blur the image according to atmospheric scattering. The 
image is filtered at the end of the rendering step. It is necessary to apply the MTF individually on 
each object of the scene because the scattering is a function of the optical depth. For a given 
object, the optical depth is estimated by 

( ) ( )

( )

d
ln

d

atm sensor

sensor

T R

R

 
λ λ λ  τ ≈ −  

 λ λ
  


 , 

(10)

where Tatm is the atmosphere transmittance and Rsensor is the spectral response of the sensor. 

To obtain one image for each object, the process uses the OsgRendering library (presented in 
Section 6.2), which replaces each 3D model by a quad in the scene. The quad size is near the size 
of the model’s bounding sphere. However, for the scattering effect to take place appropriately, the 
3D model shall be replaced by a quad having the same size (in pixels) as the sensor which is 
using the IRSG (Figure 50). Obviously, the range based LOD mechanism, as presented in 
Sections 6.1.1 and 6.2.4, is deactivated i.e. the quad is always displayed whatever the distance is 
between the platform and the sensor. An OSG post-draw callback is used to filter the texture 
which was applied on the quad with the MTF. The main disadvantage of this approach is that it is 
necessary to transfer texture data from the GPU to the CPU to perform texture filtering, which 
increases the process duration. 
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Figure 50: Different quads involved in different techniques.  

The library FFTW is used to apply MTF on the resulting quad of each entity. This library is a free 
open source product in the context of non-profit product (GPL licence). A commercial version is 
also available and it is used in many commercial products like Matlab. The use of this library 
includes only a limited number of changes in KARMA solution. The files of FFTW have been 
added in the %KARMA_ROOT%\Softwares\ directory. 

Figure 51 presents a flowchart of major steps to apply MTF on the quad of each entity. The 
process is divided in three main operations. The first one is to get the data from the texture and 
copy values in a FFTW buffer. The second step is to apply the MTF on the image. Finally, the 
filtered data is taken from the FFTW buffer and put back in the texture. 

 

Figure 51: General process to apply MTF on the texture. 
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The ApplyMTF function is the central part of the algorithm. This function filters image with a 
given MTF.  

The flowchart of the ApplyMTF function is shown at Figure 52. The MTF 1D, interpolated from 
the MTF database, is one of the two inputs of the function. It is necessary to transform the 1D 
MTF to 2D MTF according to image dimensions. The method is illustrated on Figure 53. The 
MTF computed by the model is a 1D curve. The filter buffer is filled by rotating the 1D MTF 
around central point. The MTF is applied only on the FOV of the sensor. The points outside the 
FOV are set to the last value of the MTF. The result of this operation is illustrated on Figure 54. 
This result is put in a 2D FFTW buffer ready for filtering operation. 

  

Figure 52: Flow chart of ApplyMTF function. 
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Figure 53: Method to create 2D MTF. 

 

Figure 54: Example of 2D MTF. 

The following steps apply the MTF filter on an image. The first step computes the image 
transform in frequency domain. This step is performed by FFTW. The second step is to apply the 
filter on the image by multiplying each buffer element to element. The third step is the inverse 
FFT transform computed by FFTW. The inverse transformation function of FFTW gives an 
unnormalized transform. It is necessary to normalize the result by the size of the buffer (number 
of rows * number of columns). Finally, the image is cropped to get a buffer that is the same size 
of the initial buffer.  

Table 22: Apply MTF function. 

void ApplyMTF(std::vector<std::pair <double, double>> &MTF, doubleFOV, int sizeX, int 
sizeY, fftw_complex **image) 

{ 
    int sizeXInit = sizeX; 
    int sizeYInit = sizeY; 
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    if (sizeX != sizeY) 
    { 
        PadImage (image, sizeX, sizeY); 
 
        if (sizeX > sizeY) 
            sizeY = sizeX; 
        else 
            sizeX = sizeY; 
    } 
 
    // Compute MTF 
    fftw_complex *MTF2D = NULL; 
    Generate2DMTF(MTF, sizeX, sizeY, FOV, &MTF2D); 
 
    // compute FFT of the image 
    fftw_complex *imageFFT = NULL; 
    fftw_planplan; 
 
    imageFFT = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * sizeX * sizeY); 
 
    plan = fftw_plan_dft_2d(sizeX, sizeY, *image, imageFFT, FFTW_FORWARD, FFTW_ESTIMATE); 
    fftw_execute(plan); 
 
    // shifting 
    FFTShift(imageFFT, sizeX, sizeY); 
 
    // multiply image by the mtf (frequency) 
    for( int i = 0; i < sizeY*sizeX; ++i ) 
    { 
        imageFFT[i][0] = imageFFT[i][0] * MTF2D[i][0]; 
        imageFFT[i][1] = imageFFT[i][1] * MTF2D[i][0]; 
    } 
 
    FFTShift(imageFFT, sizeX, sizeY); 
 
    // compute inverse transform 
    fftw_destroy_plan(plan); 
    plan=fftw_plan_dft_2d(sizeX, sizeY, imageFFT, *image, FFTW_BACKWARD, FFTW_ESTIMATE); 
    fftw_execute(plan); 
 
    FFTNormalize(*image, sizeX, sizeY); 
    NormComplex (*image, sizeX, sizeY); 
 
    //Crop image to get the original size 
    CropImage(image, sizeX, sizeY, 0, 0, sizeXInit, sizeYInit); 
    sizeX = sizeXInit; 
    sizeY = sizeYInit; 
 
    fftw_destroy_plan(plan); 
    fftw_free (imageFFT); 
} 

 

9.3 Results 

This section presents images produced by the process described in the previous section. Figure 55 
presents images with and without the scattering effect on a simple sphere model. Notice that this 
is not the expected result. The image should rather show a diffuse circle rather than a cross. Due 
to the project ending, an investigation of the error leading to that result could not be conducted.  
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Figure 55: Image of the sphere model without (left) and with (right) scattering effect. 

In KARMA simulations, the parameter UseAtmosphereScattering of an ImagingSensor allows 
to control the activation/deactivation of scattering. Notice that an atmospheric module (e.g. 
AtmosphereScatteringLUT), which can manage scattering requests, shall also be defined in the 
environment’s composition. Figure 56 shows the scattering activation in the Options dialog box 
in SMAT. Notice that the zoom antialiasing (128, 256 or 512) must be activated in order to be 
able to use this feature in KARMA simulations and in SMAT. 

 

Figure 56: Activating the scattering in SMAT. 
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10 SMAT controls 

During the project, some new controls and enhancements were done to SMAT. The following 
sections describe these new features. 

10.1 Coordinate system 

The view coordinate system was added at the left bottom side of the model viewer. The model 
coordinate system was also integrated and is located at the center of the model. Figure 57 shows 
these new additions. These coordinate systems can be shown or hidden via the View menu. 

 

Figure 57: Model view inside SMAT. 

10.2 Sun vector 

The sun vector is represented by a yellow line originating from the center of the model and 
pointing towards the sun (see Figure 57). This vector can also be shown or hidden via the View 
menu. 

10.3 Model-View manipulator 

The manipulators were reviewed allowing a more intuitive and precise control over the scene. 
The camera is controlled with sliders, and now it is also possible to control the model’s 
orientation. Such a control is required with the addition of a terrain and skybox in the scene.  
Values can also be entered in text fields, which allow inserting precise values (see Figure 58). 



 
 

68 DRDC Valcartier CR 2011-167 
 
 
 
 

 

Figure 58: Camera and model manipulators inside SMAT. 

10.4 Temperature profile 

A new functionality was added to SMAT which allows generating a chart where the temperature 
is obtained from SMART for a range of altitudes (see Figure 59). A dialog box allows setting the 
analysis parameters (the minimum and maximum altitudes and the step) used to generate the 
chart. 

 

 

Figure 59: Setup and view a temperature profile. 

10.5 Images comparison 

A new tool in SMAT allows comparing images produced by SMAT or KARMA simulations in 
the CSV format. It is very useful to obtain the differences between two images to see, for 
example, the impact of an algorithm on the IRSG. Figure 60 shows an example where an image 
was produced without antialiasing (top left) and another one, with the ZAA 512 activated (top 
right). The image created from the comparison (bottom) shows where the differences are (around 
the propellers and the plumes). 
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Figure 60: Comparing images with SMAT. 

10.6 Polar plot 

The polar plot analysis was reviewed to add a third execution mode. The first two modes were 
already developed but are still explained. Figure 61 shows the polar plot types available. 

 

Figure 61: Polar plot analysis with SMAT. 
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10.6.1 Camera-Azimuth mode 

The camera is placed on the horizontal plane, in front of the 3D model and looking at the center 
of the model. The camera will rotate around the model on the horizontal plane, around the scene 
Height axis (up axis); clockwise when viewed from the model. The view offset can be used to 
give an elevation to the camera. 

10.6.2 Camera-Elevation mode 

The camera is placed in front of the 3D model, in the horizontal plane of the model and looking at 
the center of the model. The camera will rotate counterclockwise around the X axis of the model. 
The camera begins its rotation by moving down. 

10.6.3 Model-Yaw mode 

The model pitch and roll are set to 0.0 and the model is rotated around its own Z axis (up axis) to 
face the camera. The camera is at the current position in the model viewer, and looking at the 
center of the model. The model rotates counterclockwise around its own Z axis. 

10.7 Radiative outputs 
A tool was added to SMAT to interrogate SMART (if SMART is correctly initialized) and obtain 
different spectrums that could be used into image-based analysis using the IRSG. This tool is 
accessible via the Tools menu, under Radiative Output... menu item as shown in Figure 62.  
 

 

Figure 62: Radiative outputs generator inside SMAT. 

It allows obtaining atmospheric transmittance, path radiance, background radiance, sun 
irradiance, up flux and down flux. The aspect of the 3D model (also referred as target) presented 
in the model viewer is used for this analysis and the only values necessary to SMART as input are 
the model altitude and the distance between the target and the sensor. Figure 63 shows an 
example where a sun irradiance spectrum is generated. 
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Figure 63: Sun irradiance spectrum obtained from SMART. 
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11 Using OSG formats within the IRSG 

The IRSG uses OpenFlight models because this format contains IRColor and IRMaterial fields 
which are used by the IRSG to compute the thermal radiance of 3D models. These attributes are 
native in OpenFlight models but are not in OSG files. A mechanism to convert OpenFlight 
models in OSG format is then required. This is a first step to have a format which will be 
modifiable by a custom editor, removing the dependency to OpenFlight format and its associated 
model editors.  

An important requirement is to keep the OSG files compliant with its own format and readable on 
other computers, even if they do not have the appropriate (modified) reader to process the newly 
included parameters. In order to respect this criterion, the UserData field of OSG files was used. 

11.1 Using the OSG UserData field 

Any object inheriting from osg::Object and placed in the UserData attribute of a Node will 
automatically be written into the UserData field of that object inside an .osg file (c.f. 
Object_writeLocalData inside the OSG plugin).  

However, these data structures will not automatically be written or read inside the binary format 
version of OSG. As revealed by the code (c.f. DataOutputStream::writeObject() and 
DataInputStream::readObject() methods of the IVE plugin), only objects from the following 
classes (or inheriting from) can be read/write from/to an .ive file from/to the UserData field 
without modifying the plug-in: 

• osg::Node; 

• osg::StateSet; 

• osg::StateAttribute; 

• osg::Drawable; and 

• osgSim::ShapeAttributeList. 

11.2 Required modifications 

The ShapeAttributeList data structure perfectly suits the needs of the IRSG. As stated before, 
this structure is automatically managed for the UserData field. No modifications to the OSG and 
IVE plug-ins are necessary to read or write the IRSG parameters. The ShapeAttributeList data 
structure is a container of ShapeAttribute. A ShapeAttribute is an object defined by: 

• a name (const char *); and 

• a type value (int, double, string). 
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So, the IRColor and IRMaterial OpenFlight fields are used as names for a ShapeAttribute and 
their value (database indices) are stored as integers. However, those fields are not supported in 
OSG nodes. The file GeometryRecords.cpp has been modified to read those fields and store 
them as UserData. Thus, the osgdb_openflight.dll is modified to include the IRColor and 
IRMaterial parameters in the OSG structure. 

In flt::Face::readRecord() method, the following code is used to gather IRColor and 
IRMaterial in the geometries: 

 
// Set IRColor and IRMaterial properties (not available in OSG) 
 
osgSim::ShapeAttributeList* attributeList = new osgSim::ShapeAttributeList(); 
 
osgSim::ShapeAttribute* irColorAttribute = new osgSim::ShapeAttribute("IRColor", IRColor); 
 
osgSim::ShapeAttribute* irMaterialAttribute = new osgSim::ShapeAttribute("IRMaterial", 
IRMaterial); 
 
attributeList->push_back(*irColorAttribute); 
attributeList->push_back(*irMaterialAttribute); 
 
_geometry.get()->setUserData(attributeList); 
 

11.3  Converting a model (FLT to OSG) 

A simple way to convert a model from a format to another one is to create a batch file in the same 
folder as the model to be converted. This batch file must invoke the osgconv.exe utility located 
in %KARMA_ROOT%\Softwares\OpenSceneGraph\bin\. 

In the example presented in Table 23, osgconv is converting the CC130_IR model from an 
OpenFlight format to an OSG binary format. Notice that the PATH is also defined to ensure that 
the correct dll (osgdb_openflight.dll), modified from the original one, is loaded. 

Table 23: An example of batch file used to convert a 3D model from FLT to IVE. 

 

@echo off 

PATH=%KARMA_ROOT%\Softwares\OpenSceneGraph\dll 

"%KARMA_ROOT%\Softwares\OpenSceneGraph\bin\osgconv.exe" -O “preserveObjectpreserveFace” CC130_IR.flt 
CC130_IR.ive 

pause 
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12 Scaling parameters 

To perform Monte Carlo based simulations, a requirement emerged stating that surface’ 
temperature and emissivity can vary dynamically. These values are defined in a binary file 
(database) which is associated to a model. Instead of manipulating directly the binary file, the 
solution developed uses two new files (two files are required for each database to be modified): 
one containing the temperatures which must vary and the second, containing emissivity 
parameters to change. 

Thus, for each parameter that needs to vary, three parameters must be defined: 

1. minimal limit; 

2. maximal limit; and 

3. distribution type: 

a. Uniform Distribution : 0  

b. Normal Distribution : 1  

c. Exponential Distribution : 2  

d. Laplace Distribution : 3  

e. Cauchy Distribution : 4  

f. Rayleigh Distribution : 5  

g. Log Normal Distribution : 6  

h. Levy Alpha Stable Distribution : 7  

i. Gamma Distribution : 8  

j. Chi-Squared Distribution : 9  

k. F Distribution : 10 

l. T Distribution : 11 

m. Beta Distribution : 12 

n. Pareto Distribution : 13 

o. Poisson Distribution : 14 

A KARMA internal library (%KARMA_ROOT%\Utilities\MonteCarlo) is used to obtain a random 
value from these parameters which is then applied to a material’s temperature and/or emissivity. 
Notice that the random values are obtained when the database is loaded i.e. when a 3D model is 
added in the scene generation module. 

To control the value, min and max can be set to the same value. For example, if min and max are 
set to 1, the value returned by the distribution will be 1. 
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Table 24: An example defining a scale parameter inside an XML file. 

 

<data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\Karma\xml\schema\parameters.xsd"> 
<fileType>Parameters</fileType> 
<parameter name="1"> <!-- database indice --> 

<vector3> 
<double>0.0</double> <!-- min --> 
<double>1.0</double> <!-- max --> 
<double>0</double> <!-- distribution --> 

</vector3> 
<documentation>flat gray paint</documentation> 
</parameter> 
</data> 
 

At run time, the scales are loaded from XML files and stored into the database that is associated 
to a 3D model. This database is used by the IRSG to compute the apparent radiance as presented 
in Section 4. Note that a temperature scale is not used when a temperature is based on a user 
defined spectrum (introduced in Section 8.1) while a emissivity scale is always used, no matter if 
the surface’s emitted radiance is computed from a temperature or a user defined spectrum. 

For KARMA simulations, scales are automatically loaded and used if they respect the following 
rules: 

• The names of files must be the same as the 3D model files with one of the following the 
concatenated string, depending on the scale type, (emissivitiesScalings).xml or 
(temperaturesScalings).xml. For example, for the model CC130_IR.flt, the name 
shall be: 

o CC130_IR(emissivitiesScalings).xml, or 

o CC130_IR(temperaturesScalings).xml 

• The files must be located in the same folder as the 3D model. 

For SMAT analysis, it shall be explicitly set if scales must be used. This is done in the options 
dialog box as shown in Figure 64. 
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Figure 64: Setting the scales activation inside SMAT. 

Notice that SMAT can create automatically the two scale files. When a user edits a temperature 
and material database, and this database is saved on disk via the Save Database command in the 
File menu, the files are generated (if they do not exist!) with default values. 
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13 Evaluating Performance Validator tool 

The IRSG consumes a lot of computer resources and its performance affect the duration of 
KARMA simulations. In order to find bottlenecks, a commercial tool was used to evaluate the 
time required to perform the scene generation process. Performance Validator is a commercial 
tool which allows profiling code execution. Many statistics are available like the total time a 
method took to execute, the number of times a method was called, etc. An important aspect of 
Performance Validator is that it is not intrusive: the tool binds itself to binary files: no tags or 
additional code need to be inserted in the code. 

Prior using this tool, the accuracy of timing results obtained with Performance Validator was 
evaluated. To accomplish this task, a simple in-house tool (name Custom Tool in the remainder of 
this section) using standard timing functions inserted directly in the source code to be evaluated 
was developed. This tool allows obtaining the total timing for different methods i.e. the 
cumulative method duration during for the whole software lifetime. 

The following sections present the results obtained with Performance Validator and Custom Tool 
to calculate some code execution duration. These are just some basic tests to obtain a certain level 
of confidence with the tool. 

13.1 Evaluating Performance Validator overhead 

There are different performance timing mechanisms available in Performance Validator. As 
shown in Figure 65, Performance Counters mechanism was used to realize the timing operations. 
This is the most accurate method available. 

 

Figure 65: Performance Validator timing mechanisms. 
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13.2 Test 1: Evaluating method without child calls 

An important concern was that Performance Validator is adding a lot of code to hook/analyze a 
software component. The result would then be that extra time, i.e. overhead, is added to method 
duration. To analyze this phenomenon, a method with an a priori estimated time was defined. By 
using the C++ Sleep(DWORD dwMilliseconds) function, which pause the normal execution flow 
in terms of millisecond (specified in argument), the theoretic time to execute a portion of code is 
known before its execution. Then, it is possible to observe a tool precision to profile this method. 

For different reasons mentioned in the Performance Validator user guide, some methods may not 
be instrumented by the profiler (the method is too short for instance). If the method to be tested 
only contains a single call to Sleep(…), it will not be evaluated. To be profiled, the method shall 
contain extra code (some calls to std::cout()or Sleep(0) for instance). 

Table 25: Code for the evaluation of a method call. 

 
int main(int argc, char* argv[]) 
{ 
    Run(); 
} 
 
void Run() 
{ 
     Sleep(10000);// 10,000 ms sleep 
} 
 

Table 26 presents the results obtained for the preceding code (i.e. profiling the Run() method) 
with Performance Validator and the tool developed for comparison purpose. 

Table 26: Evaluation of a portion of code results. 

Profiling Tool 
Duration 

(ms) 

Performance Validator 9,999.63

Custom Tool 10,001.03

Thus, Performance Validator does not add significant extra time to calculate a method which does 
not include calls to other methods. 

13.3 Test 2: Evaluating a method with repeated child calls 

Another concern was that Performance Validator is adding a lot of code to hook/analyze a method 
which calls other methods, adding an extra time to method duration. 
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Table 27: Code for the evaluation of a method call with 10,000 child calls. 

 
int main(int argc, char* argv[]) 
{ 
    Run(); 
} 
 
void Run() 
{ 
     for(int i = 0; i < 10000; i++) 
     { 
         ShortSleep(); 
     } 
} 
 
void ShortSleep() 
{ 
    Sleep(1); // 1 ms sleep 
} 
 

Table 28 presents the results obtained for the previous code (profiling the Run() and the 
ShortSleep() methods) with Performance Validator and the custom tool developed. 

Table 28: Repeated method calls results. 

Profiling Tool 

Total time 
(ms) 

Run ShortSleep

Performance Validator 19,538.27 19,483.61 

Custom Tool 19,538.99 19,522.21 

Notice that 10,000 calls to a method containing a 1 ms sleep take more than 10,000 ms to execute 
since there is an extra cost to call a non-inline method, independently from its content. With the 
results obtained, Performance Validator gives accurate results for a method which call a repeated 
(but relatively low compared to the next test) number of child methods. 

13.4 Test 3: Evaluating a method with numerous child calls  

Another test was elaborated to observe a method which calls another method very often. With 
preliminary tests done with Performance Validator, the tool seems to overestimate some method 
duration when these methods are called a high number of times. 
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Table 29: Code for the evaluation of a method call with 1,000,000 child calls. 

 
std::vector<int> values; 
 
int main(int argc, char* argv[]) 
{ 
    Run(); 
} 
 
void Run() 
{ 
    for(int i = 0; i < 1000000; i++)// 1,000,000 calls 
        IncreaseVector(); 
} 
 
void IncreaseVector() 
{ 
    values.push_back(1); 
} 
 

Table 30 presents the results obtained for the previous code (profiling the Run() and the 
IncreaseVector() methods) with Performance Validator and the custom tool developed. 

Table 30: Numerous method calls results. 

Profiling Tool 

Total time 
(ms) 

Run IncreaseVector 

Performance Validator 12,175.60 9,979.53 

Custom Tool 9,943.97 9,227.98 

13.5 Discussion  

Performance Validator has proved to be an interesting tool helping in the process of obtaining 
C++ methods execution time. This software is easy to use and do not required code modifications 
in classes to be profiled. The tested case consisting to obtain the execution times required for a 
method with numerous child calls showed that there could be situations where the tool is not 
totally accurate. However, there are no equivalent situations in the IRSG module. 
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14 Conclusion 

During the contract “Synthetic Infrared Scene” (W7701-082234), many new features were 
developed to increase the fidelity of the infrared scene generator module of the KARMA 
framework. The signature and modelling analysis tool (SMAT) was also modified to take 
advantage of the recent development. New tools were also added to SMAT to support the 
analysis. 

The main improvements to the IRSG module include: the use of advanced rendering libraries and 
mechanisms to exploit graphical processor units, better atmospheric modelling including the use 
of a wideband-ck mode for increased performances, better representation of backgrounds, better 
representation of surface reflections, implementation of a zoom antialiasing algorithm, and 
representation of scattering effects.  

At this moment, the zoom antialiasing algorithm is working fine but some optimizations are 
necessary to decrease the time require to generate an image. In fact, the performances of the 
IRSG still need to be addressed because it has a major impact on the simulations. To this end, the 
tool Performance Validator could be used to detect bottlenecks and make necessary changes and 
optimizations. 

As presented in Section 9.3, the scattering effect is not fully functional. Indeed, the process 
generates a result which looks like a cross instead of a diffuse circle. Some investigations should 
allow detecting what stage of the mechanism produces this unexpected result. 
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Annex A AtmosphereSmart XML parameters file 
example. 

<?xml version="1.0" encoding="UTF-8" standalone="no" ?> 
<!--Created by KARMA XML file logger--> 
<!-- 
Copyright Her Majesty the Queen as represented by the Minister of National Defence, 2011 
 
Terms of release: 
The information contained herein is proprietary to Her 
Majesty and is provided to the recipient on the 
understanding that it will be used for information and 
evaluation purposes only. Any commercial use 
including for manufacture is prohibited. Release to 
third parties of this publication or information 
contained herein is prohibited without the prior 
written consent of Defence R&D Canada. 
--> 
<data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="..\..\..\..\..\..\xml\schema\parameters.xsd"> 
  <fileType>Parameters</fileType> 
  <type>/AtmosphereSmart/Root/Atmosphere/AtmosphereSmart</type> 
  <Object_Model_Identification_Table> 
    <Name/> 
    <Version/> 
    <Date/> 
    <Purpose/> 
    <Application_Domain/> 
    <Sponsor/> 
    <POC/> 
    <POC_Organization/> 
    <POC_Telephone/> 
    <POC_Email/> 
  </Object_Model_Identification_Table> 
 
  <documentation>Atmospheric model based on SMART/MODTRAN allowing the calculation of 
transmittance, path radiance, background radiance, solar irradiance, up flux, down flux; 
in spectral and/or wideband correlated-k.</documentation> 
 
  <parameter name="AerosolModel"> 
    <double>0</double> 
    <documentation>Aerosol model. 
 
                        0: MODTRAN rural aerosol model 
                        1: MODTRAN urban aerosol model 
                        2: MODTRAN maritime aerosol model 
                        3: MODTRAN nam aerosol model 
                        4: MODTRAN tropospheric aerosol model 
                        5: MODTRAN advective fog aerosol model 
                        6: MODTRAN radiative fog aerosol model 
                        7: MODTRAN desert aerosol model 
        </documentation> 
  </parameter> 
 
  <parameter name="AirMass"> 
    <double>3</double> 
    <documentation>Air mass parameter, ICSTL parameter in MODTRAN.</documentation> 
  </parameter> 
 
  <parameter name="AlbedoValues"> 
    <vector> 
      <double>0.71</double> 
      <double>0.56</double> 
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      <double>0.38</double> 
      <double>0.13</double> 
      <double>0.2</double> 
      <double>0.2</double> 
      <double>0.2</double> 
      <double>0.18</double> 
      <double>0.15</double> 
      <double>0.12</double> 
      <double>0.1</double> 
      <double>0.08</double> 
    </vector> 
    <documentation>Surface albedo (unitless).</documentation> 
  </parameter> 
 
  <parameter name="AlbedoWavelengths"> 
    <vector> 
      <double>1.5</double> 
      <double>2</double> 
      <double>2.5</double> 
      <double>3</double> 
      <double>3.5</double> 
      <double>4</double> 
      <double>5</double> 
      <double>6</double> 
      <double>8</double> 
      <double>10</double> 
      <double>12</double> 
      <double>14</double> 
    </vector> 
    <documentation>Spectral grid of albedo data (microns).</documentation> 
  </parameter> 
 
  <parameter name="AtmosphereModel"> 
    <double>2</double> 
    <documentation>Selects one of the six geographical-seasonal model atmospheres. 
 
                        1: Tropical Atmosphere (15 deg North Latitude). 
                        2: Mid-Latitude Summer (45 deg North Latitude). 
                        3: Mid-Latitude Winter (45 deg North Latitude). 
                        4: Sub-Arctic Summer (60 deg North Latitude). 
                        5: Sub-Arctic Winter (60 deg North Latitude). 
                        6: 1976 US Standard Atmosphere. 
        </documentation> 
  </parameter> 
 
  <parameter name="BaseWavelengthMax"> 
    <double>5</double> 
    <documentation>Upper spectral boundary (max. is 40 micron).</documentation> 
  </parameter> 
 
  <parameter name="BaseWavelengthMin"> 
    <double>3</double> 
    <documentation>Lower spectral boundary (min. is 0.2 micron).</documentation> 
  </parameter> 
 
  <parameter name="CloudBaseAltitude"> 
    <double>-1</double> 
    <documentation>Cloud base altitude relative to ground level (CALT parameter in  
                   MODTRAN) 
 
                        greater than or equal to 0 : Cloud base altitude relative to  
                                                     ground level (m). 
                        less than 0 : Use default cloud base altitude. 
         </documentation> 
  </parameter> 
 
  <parameter name="CloudExtinction"> 
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    <double>0</double> 
    <documentation>Cloud liquid water droplet and ice particle vertical extinction (CEXT  
                   parameter in MODTRAN) 
 
                         greater than 0 : Cloud water particle vertical extinction (m-1). 
                         less than or equal to 0 : Do not scale extinction coefficients. 
         </documentation> 
  </parameter> 
 
  <parameter name="CloudModel"> 
    <double>0</double> 
    <documentation>MODTRAN cloud/rain model (0-10), ICLD parameter in MODTRAN. 
 
                        0: No clouds or rain. 
                        1: Cumulus cloud layer: base 0.66 km, top 3.0 km. 
                        2: Altostratus cloud layer: base 2.4 km, top 3.0 km. 
                        3: Stratus cloud layer: base 0.33 km, top 1.0 km. 
                        4: Stratus/stratocumulus layer: base 0.66 km, top 2.0 km. 
                        5: Nimbostratus cloud layer: base 0.16 km, top 0.66 km. 
                        6: 2.0 mm/hr ground Drizzle (modeled with cloud 3 and 0.86 mm / hr  
                           at 1.0 km). 
                        7: 5.0 mm/hr ground Light rain (modeled with cloud 5 and 2.6 mm /  
                           hr at 0.66 km). 
                        8: 12.5 mm/hr ground Moderate rain (modeled with cloud 5 and 6.0  
                           mm / hr at 0.66 km). 
                        9: 25.0 mm/hr ground Heavy rain (modeled with cloud 1 and to 0.2  
                           mm / hr at 3.0 km). 
                        10: 75.0 mm/hr ground Extreme rain (modeled with cloud 1 and 1.0  
                           mm / hr at 3.0 km). 
                        18: Standard Cirrus model (64 mm mode radius for ice particles). 
                        19: Sub-visual Cirrus model (4 mm mode radius for ice particles). 
        </documentation> 
  </parameter> 
 
  <parameter name="CloudThickness"> 
    <double>0</double> 
    <documentation>Cloud thickness (CTHIK parameter in MODTRAN) 
 
                         greater than 0 : Cloud vertical thickness (m). 
                         less than or equal to 0 : Use default cloud thickness. 
         </documentation> 
  </parameter> 
 
  <parameter name="GroundTemperature"> 
    <double>20</double> 
    <documentation>Lower surface (ground or sea) temperature (C).</documentation> 
  </parameter> 
 
  <parameter name="IrradianceMode"> 
    <double>1</double> 
    <documentation>Irradiance mode. 
 
                        1: 1D pre-calculation mode 
                        2: 2D on-the-fly calculation mode 
        </documentation> 
  </parameter> 
 
  <parameter name="MeasurementHeight"> 
    <double>5.0</double> 
    <documentation>Measurement height for temperature, pressure and relative humidity (m).  
                   Valid from 2 to 40 m. Only affects DRDC meteo model. 
    </documentation> 
  </parameter> 
 
  <parameter name="MeteoModel"> 
    <double>1</double> 
    <documentation>Use standard MODTRAN models, or modified MODTRAN models (temperature,  
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                    pressure and water content profile of the lower atmosphere). 
 
                        1: Modtran model 
                        2: DRDC model 
         </documentation> 
  </parameter> 
 
  <parameter name="ModelType"> 
    <entityType>SMART_ATMOSPHERIC_MODEL</entityType> 
    <documentation>Used to save the model type. 
    </documentation> 
  </parameter> 
 
  <parameter name="PressureMH"> 
    <double>1013</double> 
    <documentation>Pressure at measurement height (mbar). Valid from 800 to 1200 mbar.  
                  Only affects DRDC meteo model. 
    </documentation> 
  </parameter> 
 
  <parameter name="RelativeHumidityMH"> 
    <double>50</double> 
    <documentation>Relative humidity at measurement height (%). Valid from 0 to 100 %.  
                  Only affects DRDC meteo model. 
    </documentation> 
  </parameter> 
 
  <parameter name="Resolution"> 
    <double>5</double> 
    <documentation>Wavenumber resolution. 
 
                        1:  1 cm-1  
                        5:  5 cm-1 
                        15: 15 cm-1 
        </documentation> 
  </parameter> 
 
  <parameter name="ScatteringMode"> 
    <double>2</double> 
    <documentation>Scattering approximation mode affects the accuracy (and speed) of the  
                  scattering calculations. Setting the scattering mode to single  
                  scattering is faster but less accurate. 
 
                        1: single scattering 
                        2: two flux multiple scattering (required for clouds modelisation  
                           and up-down flux calculation) 
        </documentation> 
  </parameter> 
 
  <parameter name="TemperatureALT0"> 
    <double>20</double> 
    <documentation>Air temperature (altitude 0) (C). Valid from -10 to 40 C. (the absolute  
                  difference between this parameter and TemperatureMH cannot exceed 10  
                  C.). Only affects DRDC meteo model.</documentation> 
  </parameter> 
 
  <parameter name="TemperatureMH"> 
    <double>20</double> 
    <documentation>Air temperature at measurement height (C). Valid from -40 to 40 C. (the  
                  absolute difference between this parameter and TemperatureALT0 cannot  
                  exceed 10 C.). Only affects DRDC meteo model.</documentation> 
  </parameter> 
 
  <parameter name="Visibility"> 
    <double>0</double> 
    <documentation>Koschmieder visibility (m), 0 for model default.</documentation> 
  </parameter> 
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  <parameter name="WindDirection"> 
    <double>0</double> 
    <documentation>Current wind direction (East of North) (rad).</documentation> 
  </parameter> 
 
  <parameter name="WindSpeed"> 
    <double>5</double> 
    <documentation>Wind speed at measurement height (m/s). Valid from 0.1 to 30 m/s.  
    </documentation> 
  </parameter> 
 
  <parameter name="WindSpeedAverage24"> 
    <double>5</double> 
    <documentation>Wind speed average in last 24 hours (m/s). Valid from 0.1 to 30 m/s.   
    </documentation> 
  </parameter> 
 
  <parameter name="WindSpeedMeasurementHeight"> 
    <double>10</double> 
    <documentation>Measurement height for wind speed (m). Valid from 2 to 40 m.    
    </documentation> 
  </parameter> 
</data> 
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List of symbols/abbreviations/acronyms/initialisms 

2D Two Dimensions 

3D Three Dimensions 

API Application Program Interface 

ATM Atmosphere 

CG C for Graphics 

CK Correlated-K 

CPU Central Processing Unit 

CR Contract Report 

CSV Comma-Separated Values 

DND Department of National Defence 

DRDC Defence Research & Development Canada 

FBO Framebuffer Object 

FFT Fast Fourier Transform 

FOI Field Of Interest 

FOV Field Of View 

FSAA Full Screen Antialiasing 

GPL General Public License 

GPU Graphics Processing Unit 

HDR High Dynamic Range 

HUD Heads-Up Display 

ICD Installable Client Driver 

ID Identifier 

IR Infrared 

IRSG Infrared Scene Generator 

LBB Black Body Radiance 

LOD Level Of Details 

LOS Line Of Sight 

MTF Modulation Transfer Function 

OpenGL Open Graphic Library 

OS Operating System 
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OSG OpenSceneGraph 

PSF Point Spread Function 

R&D Research & Development 

RTT Render To Texture 

SMAT Signature Modelling and Analysis Tool 

XML Extensible Markup Language 

ZAA Zoom Antialiasing 
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